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Abstract
We provide an Isabelle/HOL formalization of Bisping and Jansen’s weak spectroscopy game [4],
which can be used to simultaneously characterize and decide a hierarchy of behavioral equiva-
lences for systems with internal behavior. This is valuable for applications in concurrency the-
ory and formal verification where equivalences and distinctions of the “linear-time–branching-
time spectrum” are a recurring topic.

This entry contains a game characterization of most behavioral equivalences from stability-
respecting branching bisimilarity to weak trace equivalence. Technically, the results link dis-
tinguishing sublanguages of Hennessy–Milner logic to winning attacker budgets in an energy
game through an eight-dimensional measurement of syntactic features appearing in formulas.

Overview. This formalization provides theoretical underpinnings of https://equiv.io, a tool to
decide all behavioral equivalences at once. By phrasing equivalences as energy games, one obtains a
uniform way to handle a wide range of equivalences in van Glabbeek’s linear-time–branching-time
spectrum [6, 7]. In particular, we treat systems with silent τ -steps, which usually arise because
of abstraction from internal behavior, for instance, when modeling communication protocols or
distributed systems using transition systems.

This formalization follows Bisping and Jansen’s weak spectroscopy game [4], respectively the
proofs from the arXiv version [3].

• Section 1 provides some basics on transition systems with internal behavior.

• Sections 2 and 3 define a version of Hennessy–Milner logic for systems with internal behavior
and a syntactic metric to select sublanguages of it through coordinates.

• Sections 4 to 6 prove certain coordinates to correspond to weak trace equivalence, η-bisi-
milarity, η-similarity and branching bisimilarity as well as their stable variants. (As the
relationship is established through modal logics, the results can be understood as Hennessy–
Milner theorems [5].)

• Sections 7 to 9 introduce the weak spectroscopy game and prove that winning attacker
energies in the game correspond to coordinates of distinguishing formulas according to the
syntactic expressiveness metric.

The broader project of deciding all equivalences at once is outlined in Bisping’s PhD thesis [2].
There, one can also find more gentle introductions to the topic and to the game-theoretic approach
in general. The energy game approach is due to [1].

Acknowledgments. Several proofs in this document follow pen-and-paper proofs by David N.
Jansen.
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1 Labeled Transition Systems
theory Labeled_Transition_Systems

imports Main
begin

1.1 Base LTS

The locale LTS represents a labeled transition system consisting of a set of states P, a set of actions
Σ, and a transition relation 7→⊆ P × Σ × P. We formalize the sets of states and actions by the
type variables ’s and ’a. An LTS is then determined by the transition relation step.
locale lts =

fixes step :: ‹ ’s ⇒ ’a ⇒ ’s ⇒ bool› (‹ _ 7→ _ _› [70,70,70] 80)
begin

One may lift step to sets of states, written as P 7→S α Q.
abbreviation step_setp (‹ _ 7→S _ _› [70,70,70] 80) where

‹ P 7→S α Q ≡ (∀ q ∈ Q. ∃ p ∈ P. p 7→ α q) ∧ (∀ p ∈ P. ∀ q. p 7→ α q −→ q ∈ Q)›

The set of α-derivatives for a set of states P.
definition step_set :: ‹ ’s set ⇒ ’a ⇒ ’s set› where

‹ step_set P α ≡ { q . ∃ p ∈ P. p 7→ α q }›

The set of possible α-steps for a set of states P is an instance of step lifted to sets of steps.
lemma step_set_is_step_set: ‹ P 7→S α (step_set P α)›

using step_set_def by force

The lifted step_setp (P 7→S α Q) is therefore this set Q.
lemma step_set_eq:

assumes ‹ P 7→S α Q›
shows ‹ Q = step_set P α›
using assms step_set_is_step_set by fastforce

end — of locale lts

1.2 Labeled Transition Systems with Silent Steps

We formalize labeled transition systems with silent steps as an extension of ordinary labeled tran-
sition systems with a fixed internal action τ .
locale lts_tau =

lts step
for step :: ‹ ’s ⇒ ’a ⇒ ’s ⇒ bool› (‹ _ 7→ _ _› [70,70,70] 80) +
fixes τ :: ’a

begin

The paper [3] introduces a transition p
(α)−−→ p′ if p α−→ p′, or if α = τ and p = p′. We define

soft_step analogously and provide the notation p 7→a α p’.
abbreviation soft_step (‹ _ 7→a _ _› [70,70,70] 80) where

‹ p 7→a α q ≡ p 7→α q ∨ (α = τ ∧ p = q)›

inductive silent_reachable :: ‹ ’s ⇒ ’s ⇒ bool› (infix ‹→→› 80)
where

refl: ‹ p →→ p› |
step: ‹ p →→ p’’› if ‹ p 7→ τ p’› and ‹ p’ →→ p’’›

If p’ is silent-reachable from p and there is a τ -transition from p’ to p’’ then p’’ is silent reachable
from p.
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lemma silent_reachable_append_τ: ‹ p →→ p’ =⇒ p’ 7→ τ p’’ =⇒ p →→ p’’›
proof (induct rule: silent_reachable.induct)

case (refl p)
then show ?case using silent_reachable.intros by blast

next
case (step p p’ p’’)
then show ?case using silent_reachable.intros by blast

qed

The relation (→→) is transitive.
lemma silent_reachable_trans:

assumes
‹ p →→ p’›
‹ p’ →→ p’’›

shows
‹ p →→ p’’›

using assms silent_reachable.intros(2)
by (induct, blast+)

The relation silent_reachable_loopless is a variation of (→→) that does not use self-loops.
inductive silent_reachable_loopless :: ‹ ’s ⇒ ’s ⇒ bool› (infix ‹→→L› 80)

where
‹ p →→L p› |
‹ p →→L p’’› if ‹ p 7→ τ p’› and ‹ p’ →→L p’’› and ‹ p 6= p’›

If a state p’ is (→→) from p it is also (→→L).
lemma silent_reachable_impl_loopless:

assumes ‹ p →→ p’›
shows ‹ p →→L p’›
using assms

proof(induct rule: silent_reachable.induct)
case (refl p)
thus ?case by (rule silent_reachable_loopless.intros(1))

next
case (step p p’ p’’)
thus ?case proof(cases ‹ p = p’› )

case True
thus ?thesis using step.hyps(3) by auto

next
case False
thus ?thesis using step.hyps silent_reachable_loopless.intros(2) by blast

qed
qed

lemma tau_chain_reachabilty:
assumes ‹ ∀ i < length pp - 1. pp!i 7→ τ pp!(Suc i)›
shows ‹ ∀ j < length pp. ∀ i ≤ j. pp!i →→ pp!j›

proof safe
fix j i
assume ‹ j < length pp› ‹ i ≤ j›
thus ‹ pp!i →→ pp!j›
proof (induct j)

case 0
then show ?case

using silent_reachable.refl by blast
next

case (Suc j)
then show ?case
proof (induct i)

case 0
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then show ?case using assms silent_reachable_append_τ
by (metis Suc_lessD Suc_lessE bot_nat_0.extremum diff_Suc_1)

next
case (Suc i)
then show ?case using silent_reachable.refl assms silent_reachable_append_τ

by (metis Suc_lessD Suc_lessE diff_Suc_1 le_SucE)
qed

qed
qed

A state p can reach p’ weakly by performing an α-transition, possibly proceeded and followed by
any number of τ -transitions.
definition weak_step (‹ _ →→7→→→ _ _› [70, 70, 70] 80) where

‹ p →→7→→→ α p’ ≡ if α = τ
then p →→ p’
else ∃ p1 p2. p →→ p1 ∧ p1 7→ α p2 ∧ p2 →→ p’›

lemma silent_prepend_weak_step: ‹ p →→ p’ =⇒ p’ →→7→→→ α p’’ =⇒ p →→7→→→ α p’’›
unfolding weak_step_def using silent_reachable_trans[of p p’] by fastforce

A sequence of weak_steps from one state p to another p’.
inductive weak_step_sequence :: ‹ ’s ⇒ ’a list ⇒ ’s ⇒ bool› (‹ _ →→7→→→$ _ _› [70,70,70]
80) where

‹ p →→7→→→$ [] p’› if ‹ p →→ p’› |
‹ p →→7→→→$ (α#rt) p’’› if ‹ p →→7→→→ α p’› ‹ p’ →→7→→→$ rt p’’›

lemma weak_step_sequence_trans:
assumes ‹ p →→7→→→$ tr_1 p’› and ‹ p’ →→7→→→$ tr_2 p’’›
shows ‹ p →→7→→→$ (tr_1 @ tr_2) p’’›
using assms weak_step_sequence.intros(2)

proof induct
case (1 p p’)
then show ?case

by (metis weak_step_sequence.simps append_Nil silent_prepend_weak_step silent_reachable_trans)
next

case (2 p α p’ rt p’’)
then show ?case by fastforce

qed

The weak traces of a state are all possible sequences of weak transitions that can be performed.
abbreviation weak_traces :: ‹ ’s ⇒ ’a list set›

where ‹ weak_traces p ≡ {tr. ∃ p’. p →→7→→→$ tr p’}›

The empty trace is in weak_traces for all states.
lemma empty_trace_allways_weak_trace:

shows ‹ [] ∈ weak_traces p›
using silent_reachable.intros(1) weak_step_sequence.intros(1) by fastforce

τ can be prepended to any weak trace.
lemma prepend_τ_weak_trace:

assumes ‹ tr ∈ weak_traces p›
shows ‹ (τ # tr) ∈ weak_traces p›
using assms silent_reachable.intros(1) mem_Collect_eq

weak_step_sequence.intros(2) weak_step_def by fastforce

lemma silent_prepend_weak_traces:
assumes

‹ p →→ p’›
‹ tr ∈ weak_traces p’›
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shows
‹ tr ∈ weak_traces p›

using assms
proof -

assume ‹ p →→ p’›
and ‹ tr ∈ weak_traces p’›

hence ‹ ∃ p’’. p’ →→7→→→$ tr p’’› by auto
then obtain p’’ where ‹ p’ →→7→→→$ tr p’’› by auto
from ‹ p’ →→7→→→$ tr p’’›

and ‹ p →→ p’›
have ‹ p →→7→→→$ tr p’’›

by (metis append_self_conv2 weak_step_sequence.intros(1) weak_step_sequence_trans)
hence ‹ ∃ p’’. p →→7→→→$ tr p’’› by auto
then show ‹ tr ∈ weak_traces p›

by blast
qed

If there is an α-transition from p to p’, and p’ has a weak trace tr, then the sequence (α # tr) is
a valid (weak) trace of p.
lemma step_prepend_weak_traces:

assumes
‹ p 7→ α p’›
‹ tr ∈ weak_traces p’›

shows
‹ (α # tr) ∈ weak_traces p›

using assms
proof -

from ‹ tr ∈ weak_traces p’›
have ‹ ∃ p’’. p’ →→7→→→$ tr p’’› by auto
then obtain p’’ where ‹ p’ →→7→→→$ tr p’’› by auto
with ‹ p 7→ α p’›
have ‹ p →→7→→→$ (α # tr) p’’›

by (metis lts_tau.silent_reachable.intros(1) lts_tau.silent_reachable_append_τ
lts_tau.weak_step_def lts_tau.weak_step_sequence.intros(2))

then have ‹ ∃ p’’. p →→7→→→$ (α # tr) p’’› by auto
then show ‹ (α # tr) ∈ weak_traces p› by auto

qed

A state is weakly trace pre-ordered to another other, weakly_trace_preordered denoted by .WT if
all its traces can also be observed from the second process.
definition weakly_trace_preordered (infix ‹.WT› 60) where

‹ p .WT q ≡ weak_traces p ⊆ weak_traces q›

definition weakly_trace_equivalent (infix ‹'WT› 60) where
‹ p 'WT q ≡ p .WT q ∧ q .WT p›

Just like step_setp, one can lift (→→) to sets of states.
abbreviation silent_reachable_setp (infix ‹→→S› 80) where

‹ P →→S P’ ≡ ((∀ p’ ∈ P’. ∃ p ∈ P. p →→ p’) ∧ (∀ p ∈ P. ∀ p’. p →→ p’ −→ p’ ∈ P’))›

definition silent_reachable_set :: ‹ ’s set ⇒ ’s set› where
‹ silent_reachable_set P ≡ { q . ∃ p ∈ P. p →→ q }›

lemma sreachable_set_is_sreachable: ‹ P →→S (silent_reachable_set P)›
using silent_reachable_set_def by auto

lemma sreachable_set_eq:
assumes ‹ P →→S Q›
shows ‹ Q = silent_reachable_set P›
using sreachable_set_is_sreachable assms by fastforce
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We likewise lift soft_step to sets of states.
abbreviation soft_step_setp (‹ _ 7→aS _ _› [70,70,70] 80) where

‹ P 7→aS α Q ≡ (∀ q ∈ Q. ∃ p ∈ P. p 7→a α q) ∧ (∀ p ∈ P. ∀ q. p 7→a α q −→ q ∈ Q)›

definition soft_step_set :: ‹ ’s set ⇒ ’a ⇒ ’s set› where
‹ soft_step_set P α ≡ { q . ∃ p ∈ P. p 7→a α q }›

lemma soft_step_set_is_soft_step_set:
‹ P 7→aS α (soft_step_set P α)›
using soft_step_set_def by auto

lemma exactly_one_soft_step_set:
‹ ∃ !Q. P 7→aS α Q›

proof -
from soft_step_set_is_soft_step_set
have ‹ P 7→aS α (soft_step_set P α)›

and ‹
∧

Q. P 7→aS α Q =⇒ Q = (soft_step_set P α)›
by fastforce+

show ‹ ∃ !Q. P 7→aS α Q›
proof

from ‹ P 7→aS α (soft_step_set P α)›
show ‹ P 7→aS α (soft_step_set P α)› .

next
from ‹

∧
Q. P 7→aS α Q =⇒ Q = (soft_step_set P α)›

show ‹
∧

Q. P 7→aS α Q =⇒ Q = (soft_step_set P α)› .
qed

qed

lemma soft_step_set_eq:
assumes ‹ P 7→aS α Q›
shows ‹ Q = soft_step_set P α›
using exactly_one_soft_step_set soft_step_set_is_soft_step_set assms
by fastforce

A state is stable if it cannot make any further internal steps.
abbreviation ‹ stable_state p ≡ ∀ p’. ¬(p 7→ τ p’)›

lemma stable_state_stable:
assumes ‹ stable_state p› ‹ p →→ p’›
shows ‹ p = p’›
using assms(2,1) by (cases, blast+)

definition stability_respecting :: ‹ (’s ⇒ ’s ⇒ bool) ⇒ bool› where
‹ stability_respecting R ≡ ∀ p q. R p q ∧ stable_state p −→

(∃ q’. q →→ q’ ∧ R p q’ ∧ stable_state q’)›

end — of locale lts_tau

end

1.3 Modal Logics on LTS

We here supply abstract definitions that would work for all modal logics one might define over an
LTS. In particular, this contains mechanisms to derive equivalences from sublogics.
theory LTS_Semantics

imports
Labeled_Transition_Systems

begin

8



locale lts_semantics = lts step
for step :: ‹ ’s ⇒ ’a ⇒ ’s ⇒ bool› (‹ _ 7→ _ _› [70,70,70] 80) +
fixes models :: ‹ ’s ⇒ ’formula ⇒ bool›

begin

definition entails :: ‹ ’formula ⇒ ’formula ⇒ bool› where
entails_def[simp]: ‹ entails ϕl ϕr ≡ (∀ p. (models p ϕl) −→ (models p ϕr))›

definition logical_eq :: ‹ ’formula ⇒ ’formula ⇒ bool› where
logical_eq_def[simp]: ‹ logical_eq ϕl ϕr ≡ entails ϕl ϕr ∧ entails ϕr ϕl›

Formula implication is a pre-order.
lemma entails_preord: ‹ reflp (entails)› ‹ transp (entails)›

by (simp add: reflpI transp_def)+

lemma eq_equiv: ‹ equivp logical_eq›
using equivpI reflpI sympI transpI
unfolding logical_eq_def entails_def
by (smt (verit, del_insts))

Formula equivalence is a biimplication on the models predicate.
lemma eq_equality[simp]: ‹ (logical_eq ϕl ϕr) = (∀ p. models p ϕl ←→ models p ϕr)›

by force

lemma logical_eqI[intro]:
assumes

‹
∧

s. models s ϕl =⇒ models s ϕr›
‹
∧

s. models s ϕr =⇒ models s ϕl›
shows

‹ logical_eq ϕl ϕr›
using assms by auto

definition distinguishes :: ‹ ’formula ⇒ ’s ⇒ ’s ⇒ bool› where
distinguishes_def[simp]:
‹ distinguishes ϕ p q ≡ models p ϕ ∧ ¬(models q ϕ)›

definition distinguishes_from :: ‹ ’formula ⇒ ’s ⇒ ’s set ⇒ bool› where
distinguishes_from_def[simp]:
‹ distinguishes_from ϕ p Q ≡ models p ϕ ∧ (∀ q ∈ Q. ¬(models q ϕ))›

lemma distinction_unlifting:
assumes

‹ distinguishes_from ϕ p Q›
shows

‹ ∀ q∈Q. distinguishes ϕ p q›
using assms by simp

lemma no_distinction_fom_self:
assumes

‹ distinguishes ϕ p p›
shows

‹ False›
using assms by simp

lemma dist_equal_dist:
assumes ‹ logical_eq ϕl ϕr›

and ‹ distinguishes ϕl p q›
shows ‹ distinguishes ϕr p q›

using assms
by auto
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abbreviation model_set :: ‹ ’formula ⇒ ’s set› where
‹ model_set ϕ ≡ {p. models p ϕ}›

1.4 Preorders and Equivalences on Processes Derived from Formula Sets

A set of formulas pre-orders two processes p and q if, for all formulas in this set, the fact that p
satisfies a formula means that q must also satisfy this formula.
definition preordered :: ‹ ’formula set ⇒ ’s ⇒ ’s ⇒ bool› where

preordered_def[simp]:
‹ preordered ϕs p q ≡ ∀ϕ ∈ ϕs. models p ϕ −→ models q ϕ›

If a set of formulas pre-orders two processes p and q, then no formula in that set may distinguish
p from q.
lemma preordered_no_distinction:

‹ preordered ϕs p q = (∀ϕ ∈ ϕs. ¬(distinguishes ϕ p q))›
by simp

A formula set derived pre-order is a pre-order.
lemma preordered_preord:

‹ reflp (preordered ϕs)›
‹ transp (preordered ϕs)›
unfolding reflp_def transp_def by auto

A set of formulas equates two processes if it pre-orders these two processes in both directions.
definition equivalent :: ‹ ’formula set ⇒ ’s ⇒ ’s ⇒ bool› where

equivalent_def[simp]:
‹ equivalent ϕs p q ≡ preordered ϕs p q ∧ preordered ϕs q p›

If a set of formulas equates two processes, then no formula in that set may distinguish them in any
direction.
lemma equivalent_no_distinction: ‹ equivalent ϕs p q

= (∀ϕ ∈ ϕs. ¬(distinguishes ϕ p q) ∧ ¬(distinguishes ϕ q p))›
by auto

A formula-set-derived equivalence is an equivalence.
lemma equivalent_equiv: ‹ equivp (equivalent ϕs)›
proof (rule equivpI)

show ‹ reflp (equivalent ϕs)›
by (simp add: reflpI)

show ‹ symp (equivalent ϕs)›
unfolding equivalent_no_distinction symp_def
by auto

show ‹ transp (equivalent ϕs)›
unfolding transp_def equivalent_def preordered_def
by blast

qed

end — of context lts_semantics

end
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2 Hennessy–Milner Logic for Stability-Respecting Branch-
ing Bisimilarity

theory HML_SRBB
imports LTS_Semantics

begin

This section describes a variant of Hennessy–Milner logic that characterizes stability-respecting
branching bisimilarity (SRBB).

The following mutually-recursive datatype family describes a grammar of HML_SRBB formulas.
datatype

(’act, ’i) hml_srbb =
TT |
Internal ‹ (’act, ’i) hml_srbb_inner› |
ImmConj ‹ ’i set› ‹ ’i ⇒ (’act, ’i) hml_srbb_conjunct›

and
(’act, ’i) hml_srbb_inner =

Obs ’act ‹ (’act, ’i) hml_srbb› |
Conj ‹ ’i set› ‹ ’i ⇒ (’act, ’i) hml_srbb_conjunct› |
StableConj ‹ ’i set› ‹ ’i ⇒ (’act, ’i) hml_srbb_conjunct› |
BranchConj ’act ‹ (’act, ’i) hml_srbb›

‹ ’i set› ‹ ’i ⇒ (’act, ’i) hml_srbb_conjunct›
and

(’act, ’i) hml_srbb_conjunct =
Pos ‹ (’act, ’i) hml_srbb_inner› |
Neg ‹ (’act, ’i) hml_srbb_inner›

The constructors correspond to more conventional notation of HML as follows:

• hml_srbb (members usually referred to as ϕ):

– TT encodes >
– Internal χ encodes 〈ε〉χ
– ImmConj I ψs encodes

∧
i∈I ψs(i)

• hml_srbb_inner (usually χ):

– Obs α ϕ encodes (α)ϕ

– Conj I ψs encodes
∧

i∈I ψs(i)

– StableConj I ψs encodes ¬〈τ〉> ∧
∧

i∈I ψs(i)

– BranchConj α ϕ I ψs encodes (α)ϕ ∧
∧

i∈I ψs(i)

• hml_srbb_conjunct (usually ψ):

– Pos χ encodes 〈ε〉χ
– Neg χ encodes ¬〈ε〉χ

2.1 Semantics of HMLSRBB Formulas

This section describes how semantic meaning is assigned to HMLSRBB formulas in the context of
a LTS. We define what it means for a process p to satisfy an HMLSRBB formula ϕ, written as p
|=SRBB ϕ.
context lts_tau
begin
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primrec
hml_srbb_models :: ‹ ’s ⇒ (’a, ’s) hml_srbb ⇒ bool› (infixl ‹ |=SRBB› 60)

and hml_srbb_inner_models :: ‹ ’s ⇒ (’a, ’s) hml_srbb_inner ⇒ bool›
and hml_srbb_conjunct_models :: ‹ ’s ⇒ (’a, ’s) hml_srbb_conjunct ⇒ bool› where
‹ hml_srbb_models state TT =

True› |
‹ hml_srbb_models state (Internal χ) =

(∃ p’. state →→ p’ ∧ (hml_srbb_inner_models p’ χ))› |
‹ hml_srbb_models state (ImmConj I ψs) =

(∀ i∈I. hml_srbb_conjunct_models state (ψs i))› |

‹ hml_srbb_inner_models state (Obs a ϕ) =
((∃ p’. state 7→ a p’ ∧ hml_srbb_models p’ ϕ) ∨ a = τ ∧ hml_srbb_models state ϕ)› |

‹ hml_srbb_inner_models state (Conj I ψs) =
(∀ i∈I. hml_srbb_conjunct_models state (ψs i))› |

‹ hml_srbb_inner_models state (StableConj I ψs) =
((@ p’. state 7→ τ p’) ∧ (∀ i∈I. hml_srbb_conjunct_models state (ψs i)))› |

‹ hml_srbb_inner_models state (BranchConj a ϕ I ψs) =
(((∃ p’. state 7→ a p’ ∧ hml_srbb_models p’ ϕ) ∨ a = τ ∧ hml_srbb_models state ϕ)
∧ (∀ i∈I. hml_srbb_conjunct_models state (ψs i)))› |

‹ hml_srbb_conjunct_models state (Pos χ) =
(∃ p’. state →→ p’ ∧ hml_srbb_inner_models p’ χ)› |

‹ hml_srbb_conjunct_models state (Neg χ) =
(@ p’. state →→ p’ ∧ hml_srbb_inner_models p’ χ)›

sublocale lts_semantics ‹ step› ‹ hml_srbb_models› .
sublocale hml_srbb_inner: lts_semantics where models = hml_srbb_inner_models .
sublocale hml_srbb_conj: lts_semantics where models = hml_srbb_conjunct_models .

2.2 Distinguishing Formulas
lemma verum_never_distinguishes:

‹¬ distinguishes TT p q›
by simp

If
∧

i∈I ψs(i) distinguishes p from q, then there must be at least one conjunct in this conjunction
that distinguishes p from q.
lemma srbb_dist_imm_conjunction_implies_dist_conjunct:

assumes ‹ distinguishes (ImmConj I ψs) p q›
shows ‹ ∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q›
using assms by auto

lemma srbb_dist_conjunction_implies_dist_conjunct:
assumes ‹ hml_srbb_inner.distinguishes (Conj I ψs) p q›
shows ‹ ∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q›
using assms by auto

lemma srbb_dist_branch_conjunction_implies_dist_conjunct_or_branch:
assumes

‹ hml_srbb_inner.distinguishes (BranchConj α ϕ I ψs) p q›
shows

‹ (∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q)
∨ hml_srbb_inner.distinguishes (Obs α ϕ) p q›

using assms by force

lemma srbb_dist_conjunct_implies_dist_imm_conjunction:
assumes

‹ i∈I›
‹ hml_srbb_conj.distinguishes (ψs i) p q›

12



‹ ∀ i∈I. hml_srbb_conjunct_models p (ψs i)›
shows

‹ distinguishes (ImmConj I ψs) p q›
using assms by auto

lemma srbb_dist_conjunct_implies_dist_conjunction:
assumes

‹ i∈I›
‹ hml_srbb_conj.distinguishes (ψs i) p q›
‹ ∀ i∈I. hml_srbb_conjunct_models p (ψs i)›

shows
‹ hml_srbb_inner.distinguishes (Conj I ψs) p q›

using assms by auto

lemma srbb_dist_conjunct_or_branch_implies_dist_branch_conjunction:
assumes

‹ ∀ i ∈ I. hml_srbb_conjunct_models p (ψs i)›
‹ hml_srbb_inner_models p (Obs α ϕ)›
‹ (i∈I ∧ hml_srbb_conj.distinguishes (ψs i) p q)

∨ (hml_srbb_inner.distinguishes (Obs α ϕ) p q)›
shows

‹ hml_srbb_inner.distinguishes (BranchConj α ϕ I ψs) p q›
using assms by force

2.3 HMLSRBB Implication and Equivalence
abbreviation hml_srbb_impl

:: ‹ (’a, ’s) hml_srbb ⇒ (’a, ’s) hml_srbb ⇒ bool› (infixr ‹V› 70)
where

‹ hml_srbb_impl ≡ entails›

abbreviation
hml_srbb_impl_inner
:: ‹ (’a, ’s) hml_srbb_inner ⇒ (’a, ’s) hml_srbb_inner ⇒ bool›
(infix ‹χV› 70)

where
‹ (χV) ≡ hml_srbb_inner.entails›

abbreviation
hml_srbb_impl_conjunct
:: ‹ (’a, ’s) hml_srbb_conjunct ⇒ (’a, ’s) hml_srbb_conjunct ⇒ bool›
(infix ‹ψV› 70)

where
‹ (ψV) ≡ hml_srbb_conj.entails›

abbreviation
hml_srbb_eq
:: ‹ (’a, ’s) hml_srbb ⇒ (’a, ’s) hml_srbb ⇒ bool›
(infix ‹WsrbbV› 70)

where
‹ (WsrbbV) ≡ logical_eq›

abbreviation
hml_srbb_eq_inner
:: ‹ (’a, ’s) hml_srbb_inner ⇒ (’a, ’s) hml_srbb_inner ⇒ bool›
(infix ‹WχV› 70)

where
‹ (WχV) ≡ hml_srbb_inner.logical_eq›

abbreviation
hml_srbb_eq_conjunct
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:: ‹ (’a, ’s) hml_srbb_conjunct ⇒ (’a, ’s) hml_srbb_conjunct ⇒ bool›
(infix ‹WψV› 70)
where
‹ (WψV) ≡ hml_srbb_conj.logical_eq›

2.4 Substitution and Congruence
lemma srbb_internal_subst:

assumes
‹χl WχV χr›
‹ϕ WsrbbV (Internal χl)›

shows
‹ϕ WsrbbV (Internal χr)›

using assms by force

lemma internal_srbb_cong:
assumes ‹χl WχV χr›
shows ‹ (Internal χl) WsrbbV (Internal χr)›
using assms by auto

lemma immconj_cong:
assumes

‹ψsl ‘ I = ψsr ‘ I›
‹ψsl s WψV ψsr s›

shows
‹ ImmConj (I ∪ {s}) ψsl WsrbbV ImmConj (I ∪ {s}) ψsr›

using assms
by (auto) (metis (mono_tags, lifting) image_iff)+

lemma obs_srbb_cong:
assumes ‹ϕl WsrbbV ϕr›
shows ‹ (Obs α ϕl) WχV (Obs α ϕr)›
using assms by auto

2.5 Trivial and Equivalent Formulas
lemma empty_conj_trivial[simp]:

‹ state |=SRBB ImmConj {} ψs›
‹ hml_srbb_inner_models state (Conj {} ψs)›
‹ hml_srbb_inner_models state (Obs τ TT)›
by simp+

lemma empty_branch_conj_tau:
‹ hml_srbb_inner_models state (BranchConj τ TT {} ψs)›
by auto

lemma stable_conj_parts:
assumes

‹ hml_srbb_inner_models p (StableConj I Ψ)›
‹ i ∈ I›

shows
‹ hml_srbb_conjunct_models p (Ψ i)›

using assms by auto

lemma branching_conj_parts:
assumes

‹ hml_srbb_inner_models p (BranchConj α ϕ I Ψ)›
‹ i ∈ I›

shows
‹ hml_srbb_conjunct_models p (Ψ i)›
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using assms by auto

lemma branching_conj_obs:
assumes ‹ hml_srbb_inner_models p (BranchConj α ϕ I Ψ)›
shows ‹ hml_srbb_inner_models p (Obs α ϕ)›
using assms by auto

lemma srbb_obs_τ_is_χTT: ‹ Obs τ TT WχV Conj {} ψs›
by simp

lemma srbb_obs_is_empty_branch_conj: ‹ Obs α ϕ WχV BranchConj α ϕ {} ψs›
by auto

lemma srbb_TT_is_χTT: ‹ TT WsrbbV Internal (Conj {} ψs)›
using lts_tau.refl by force

lemma srbb_TT_is_empty_conj: ‹ TT WsrbbV ImmConj {} ψs›
by simp

Positive conjuncts in stable conjunctions can be replaced by negative ones.
lemma srbb_stable_Neg_normalizable:

assumes
‹ i ∈ I› ‹Ψ i = Pos χ›
‹Ψ’ = Ψ(i:= Neg (StableConj {left} (λ_. Neg χ)))›

shows
‹ Internal (StableConj I Ψ) WsrbbV Internal (StableConj I Ψ’)›

proof (rule logical_eqI)
fix p
assume ‹ p |=SRBB Internal (StableConj I Ψ)›
then obtain p’ where p’_spec: ‹ p →→ p’› ‹ hml_srbb_inner_models p’ (StableConj I Ψ)› by auto
hence ‹ stable_state p’› by auto
from p’_spec have ‹ ∃ p’’. p’ →→ p’’ ∧ hml_srbb_inner_models p’’ χ›

using assms(1,2) by auto
with ‹ stable_state p’› have ‹ hml_srbb_inner_models p’ χ›

using stable_state_stable by blast
hence ‹ hml_srbb_conjunct_models p’ (Neg (StableConj {left} (λ_. Neg χ)))›

using ‹ stable_state p’› stable_state_stable by (auto, blast)
hence ‹ hml_srbb_inner_models p’ (StableConj I Ψ’)›

unfolding assms(3) using p’_spec by auto
thus ‹ p |=SRBB hml_srbb.Internal (StableConj I Ψ’)›

using ‹ p →→ p’› by auto
next

fix p
assume ‹ p |=SRBB Internal (StableConj I Ψ’)›
then obtain p’ where p’_spec: ‹ p →→ p’› ‹ hml_srbb_inner_models p’ (StableConj I Ψ’)› by

auto
hence ‹ stable_state p’› by auto
from p’_spec(2) have other_conjuncts: ‹ ∀ j∈I. i 6= j −→ hml_srbb_conjunct_models p’ (Ψ j)›

using assms stable_conj_parts fun_upd_apply by metis
from p’_spec(2) have ‹ hml_srbb_conjunct_models p’ (Ψ’ i)›

using assms(1) stable_conj_parts by blast
hence ‹ hml_srbb_conjunct_models p’ (Neg (StableConj {left} (λ_. Neg χ)))›

unfolding assms(3) by auto
with ‹ stable_state p’› have ‹ hml_srbb_inner_models p’ χ›

using stable_state_stable by (auto, metis silent_reachable.simps)
then have ‹ hml_srbb_conjunct_models p’ (Pos χ)›

using lts_tau.refl by fastforce
hence ‹ hml_srbb_inner_models p’ (StableConj I Ψ)›

using p’_spec assms other_conjuncts by auto
thus ‹ p |=SRBB hml_srbb.Internal (StableConj I Ψ)›

using p’_spec(1) by auto
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qed

All positive conjuncts in stable conjunctions can be replaced by negative ones at once.
lemma srbb_stable_Neg_normalizable_set:

assumes
‹Ψ’ = (λi. case (Ψ i) of

Pos χ ⇒ Neg (StableConj {left} (λ_. Neg χ)) |
Neg χ ⇒ Neg χ)›

shows
‹ Internal (StableConj I Ψ) WsrbbV Internal (StableConj I Ψ’)›

proof (rule logical_eqI)
fix p
assume ‹ p |=SRBB Internal (StableConj I Ψ)›
then obtain p’ where p’_spec: ‹ p →→ p’› ‹ hml_srbb_inner_models p’ (StableConj I Ψ)› by auto
hence ‹ stable_state p’› by auto
from p’_spec have

‹ ∀χ i. i∈I ∧ Ψ i = Pos χ −→ (∃ p’’. p’ →→ p’’ ∧ hml_srbb_inner_models p’’ χ)›
by fastforce

with ‹ stable_state p’› have ‹ ∀χ i. i∈I ∧ Ψ i = Pos χ −→ hml_srbb_inner_models p’ χ›
using stable_state_stable by blast

hence pos_rewrite: ‹ ∀χ i. i∈I ∧ Ψ i = Pos χ −→
hml_srbb_conjunct_models p’ (Neg (StableConj {left} (λ_. Neg χ)))›

using ‹ stable_state p’› stable_state_stable by (auto, blast)
hence ‹ hml_srbb_inner_models p’ (StableConj I Ψ’)›

unfolding assms using p’_spec
by (auto, metis (no_types, lifting) hml_srbb_conjunct.exhaust hml_srbb_conjunct.simps(5,6)

pos_rewrite)
thus ‹ p |=SRBB Internal (StableConj I Ψ’)›

using ‹ p →→ p’› by auto
next

fix p
assume ‹ p |=SRBB Internal (StableConj I Ψ’)›
then obtain p’ where p’_spec: ‹ p →→ p’› ‹ hml_srbb_inner_models p’ (StableConj I Ψ’)› by

auto
hence ‹ stable_state p’› by auto
from p’_spec(2) have other_conjuncts:

‹ ∀χ i. i∈I ∧ Ψ i = Neg χ −→ hml_srbb_conjunct_models p’ (Ψ i)›
using assms stable_conj_parts by (metis hml_srbb_conjunct.simps(6))

from p’_spec(2) have ‹ ∀χ i. i∈I ∧ Ψ i = Pos χ −→ hml_srbb_conjunct_models p’ (Ψ’ i)›
using assms(1) stable_conj_parts by blast

hence ‹ ∀χ i. i∈I ∧ Ψ i = Pos χ −→
hml_srbb_conjunct_models p’ (Neg (StableConj {left} (λ_. Neg χ)))›

unfolding assms by auto
with ‹ stable_state p’› have ‹ ∀χ i. i∈I ∧ Ψ i = Pos χ −→ hml_srbb_inner_models p’ χ›

using stable_state_stable by (auto, metis silent_reachable.simps)
then have pos_conjuncts:

‹ ∀χ i. i∈I ∧ Ψ i = Pos χ −→hml_srbb_conjunct_models p’ (Pos χ)›
using hml_srbb_conjunct_models.simps(1) silent_reachable.simps by blast

hence ‹ hml_srbb_inner_models p’ (StableConj I Ψ)›
using p’_spec assms other_conjuncts
by (auto, metis other_conjuncts pos_conjuncts hml_srbb_conjunct.exhaust)

thus ‹ p |=SRBB Internal (StableConj I Ψ)›
using p’_spec(1) by auto

qed

definition conjunctify_distinctions ::
‹ (’s ⇒ (’a, ’s) hml_srbb) ⇒ ’s ⇒ (’s ⇒ (’a, ’s) hml_srbb_conjunct)› where
‹ conjunctify_distinctions Φ p ≡ λq.

case (Φ q) of
TT ⇒ undefined

| Internal χ ⇒ Pos χ
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| ImmConj I Ψ ⇒ Ψ (SOME i. i∈I ∧ hml_srbb_conj.distinguishes (Ψ i) p q)›

lemma distinction_conjunctification:
assumes

‹ ∀ q∈I. distinguishes (Φ q) p q›
shows

‹ ∀ q∈I. hml_srbb_conj.distinguishes ((conjunctify_distinctions Φ p) q) p q›
unfolding conjunctify_distinctions_def

proof
fix q
assume q_I: ‹ q∈I›
show ‹ hml_srbb_conj.distinguishes

(case Φ q of hml_srbb.Internal x ⇒ hml_srbb_conjunct.Pos x
| ImmConj I Ψ ⇒ Ψ (SOME i. i ∈ I ∧ hml_srbb_conj.distinguishes (Ψ i) p q))

p q›
proof (cases ‹Φ q› )

case TT
then show ?thesis using assms q_I by fastforce

next
case (Internal χ)
then show ?thesis using assms q_I by auto

next
case (ImmConj J Ψ)
then have ‹ ∃ i ∈ J. hml_srbb_conj.distinguishes (Ψ i) p q›

using assms q_I by auto
then show ?thesis

by (metis (mono_tags, lifting) ImmConj hml_srbb.simps(11) someI)
qed

qed

lemma distinction_combination:
fixes p q
defines

‹ Qα ≡ {q’. q →→ q’ ∧ (@ϕ. distinguishes ϕ p q’)}›
assumes

‹ p 7→a α p’›
‹ ∀ q’∈ Qα.
∀ q’’. q’ 7→a α q’’ −→ (distinguishes (Φ q’’) p’ q’’)›

shows
‹ ∀ q’∈Qα.

hml_srbb_inner.distinguishes (Obs α (ImmConj {q’’. ∃ q’’’∈Qα. q’’’ 7→a α q’’}
(conjunctify_distinctions Φ p’))) p q’›

proof -
have ‹ ∀ q’∈ Qα. ∀ q’’∈{q’’. q’ 7→a α q’’}.

hml_srbb_conj.distinguishes ((conjunctify_distinctions Φ p’) q’’) p’ q’’›
proof clarify

fix q’ q’’
assume ‹ q’ ∈ Qα› ‹ q’ 7→a α q’’›
thus ‹ hml_srbb_conj.distinguishes (conjunctify_distinctions Φ p’ q’’) p’ q’’›

using distinction_conjunctification assms(3)
by (metis mem_Collect_eq)

qed
hence ‹ ∀ q’∈ Qα. ∀ q’’∈{q’’. ∃ q1’∈Qα. q1’ 7→a α q’’}.

hml_srbb_conj.distinguishes ((conjunctify_distinctions Φ p’) q’’) p’ q’’› by blast
hence ‹ ∀ q’∈ Qα. ∀ q’’. q’ 7→a α q’’
−→ distinguishes (ImmConj {q’’. ∃ q1’∈Qα. q1’ 7→a α q’’}

(conjunctify_distinctions Φ p’)) p’ q’’› by auto
thus ‹ ∀ q’∈Qα.

hml_srbb_inner.distinguishes (Obs α (ImmConj {q’’. ∃ q’’’∈Qα. q’’’ 7→a α q’’}
(conjunctify_distinctions Φ p’))) p q’›

by (auto) (metis assms(2))+
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qed

definition conjunctify_distinctions_dual ::
‹ (’s ⇒ (’a, ’s) hml_srbb) ⇒ ’s ⇒ (’s ⇒ (’a, ’s) hml_srbb_conjunct)› where
‹ conjunctify_distinctions_dual Φ p ≡ λq.

case (Φ q) of
TT ⇒ undefined

| Internal χ ⇒ Neg χ
| ImmConj I Ψ ⇒

(case Ψ (SOME i. i∈I ∧ hml_srbb_conj.distinguishes (Ψ i) q p) of
Pos χ ⇒ Neg χ | Neg χ ⇒ Pos χ)›

lemma dual_conjunct:
assumes

‹ hml_srbb_conj.distinguishes ψ p q›
shows

‹ hml_srbb_conj.distinguishes (case ψ of
hml_srbb_conjunct.Pos χ ⇒ hml_srbb_conjunct.Neg χ
| hml_srbb_conjunct.Neg χ ⇒ hml_srbb_conjunct.Pos χ) q p›

using assms
by (cases ψ, auto)

lemma distinction_conjunctification_dual:
assumes

‹ ∀ q∈I. distinguishes (Φ q) q p›
shows

‹ ∀ q∈I. hml_srbb_conj.distinguishes (conjunctify_distinctions_dual Φ p q) p q›
unfolding conjunctify_distinctions_dual_def

proof
fix q
assume q_I: ‹ q∈I›
show ‹ hml_srbb_conj.distinguishes

(case Φ q of hml_srbb.Internal x ⇒ hml_srbb_conjunct.Neg x
| ImmConj I Ψ ⇒

( case Ψ (SOME i. i ∈ I ∧ hml_srbb_conj.distinguishes (Ψ i) q p) of
hml_srbb_conjunct.Pos x ⇒ hml_srbb_conjunct.Neg x

| hml_srbb_conjunct.Neg x ⇒ hml_srbb_conjunct.Pos x))
p q›

proof (cases ‹Φ q› )
case TT
then show ?thesis using assms q_I by fastforce

next
case (Internal χ)
then show ?thesis using assms q_I by auto

next
case (ImmConj J Ψ)
then have ‹ ∃ i ∈ J. hml_srbb_conj.distinguishes (Ψ i) q p›

using assms q_I by auto
hence ‹ hml_srbb_conj.distinguishes (case Ψ

(SOME i. i ∈ J ∧ hml_srbb_conj.distinguishes (Ψ i) q p) of
hml_srbb_conjunct.Pos x ⇒ hml_srbb_conjunct.Neg x
| hml_srbb_conjunct.Neg x ⇒ hml_srbb_conjunct.Pos x) p q›

by (metis (no_types, lifting) dual_conjunct someI_ex)
then show ?thesis unfolding ImmConj by auto

qed
qed

lemma distinction_conjunctification_two_way:
fixes Φ p I
defines

‹ conjfy q ≡
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(if distinguishes (Φ q) p q
then conjunctify_distinctions Φ
else conjunctify_distinctions_dual Φ) p q›

assumes
‹ ∀ q∈I. distinguishes (Φ q) p q ∨ distinguishes (Φ q) q p›

shows
‹ ∀ q∈I. hml_srbb_conj.distinguishes (conjfy q) p q›

proof safe
fix q
assume ‹ q ∈ I›
then consider ‹ distinguishes (Φ q) p q›

| ‹ distinguishes (Φ q) q p› using assms by blast
thus ‹ hml_srbb_conj.distinguishes (conjfy q) p q›
proof cases

case 1
then show ?thesis using distinction_conjunctification conjfy_def

by (smt (verit) singleton_iff)
next

case 2
then show ?thesis using distinction_conjunctification_dual singleton_iff

unfolding distinguishes_def conjfy_def
by (smt (verit, ccfv_threshold))

qed
qed

end — of lts_tau

end
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3 Expressiveness Prices
theory Energy

imports "HOL-Library.Extended_Nat"
begin

We intend to work on eight-dimensional vectors in an energy game. The dimensions will encode
expressiveness prices to HMLSRBB formulas. This price is supposed to capture syntactic features
needed to describe a certain property and will later be used to select sublogics of specific expres-
siveness to characterize behavioural equivalences.
The eight dimensions are intended to measure the following properties of formulas:

1. Modal depth (of observations 〈α〉, (α)),

2. Depth of branching conjunctions (with one observation clause not starting with 〈ε〉),

3. Depth of stable conjunctions (that do enforce stability by a ¬〈τ〉>-conjunct),

4. Depth of unstable conjunctions (that do not enforce stability by a ¬〈τ〉>-conjunct),

5. Depth of immediate conjunctions (that are not preceded by 〈ε〉),

6. Maximal modal depth of positive clauses in conjunctions,

7. Maximal modal depth of negative clauses in conjunctions,

8. Depth of negations

datatype energy =
E (modal_depth: ‹ enat› ) (br_conj_depth: ‹ enat› ) (conj_depth: ‹ enat› )

(st_conj_depth: ‹ enat› ) (imm_conj_depth: ‹ enat› )
(pos_conjuncts: ‹ enat› ) (neg_conjuncts: ‹ enat› ) (neg_depth: ‹ enat› )

3.1 Comparing and Subtracting Energies

In order to define subtraction on energies, we first lift the orderings ≤ and < from enat to energy.
instantiation energy :: order begin

definition ‹ e1 ≤ e2 ≡
(case e1 of E a1 b1 c1 d1 e1 f1 g1 h1 ⇒ (

case e2 of E a2 b2 c2 d2 e2 f2 g2 h2 ⇒
(a1 ≤ a2 ∧ b1 ≤ b2 ∧ c1 ≤ c2 ∧ d1 ≤ d2 ∧ e1 ≤ e2 ∧ f1 ≤ f2 ∧ g1 ≤ g2 ∧ h1 ≤ h2)

))›

definition ‹ (x::energy) < y = (x ≤ y ∧ ¬ y ≤ x)›

instance proof
fix e1 e2 e3 :: energy
show ‹ e1 ≤ e1› unfolding less_eq_energy_def by (simp add: energy.case_eq_if)
show ‹ e1 ≤ e2 =⇒ e2 ≤ e3 =⇒ e1 ≤ e3› unfolding less_eq_energy_def

by (smt (z3) energy.case_eq_if order_trans)
show ‹ e1 < e2 = (e1 ≤ e2 ∧ ¬ e2 ≤ e1)› using less_energy_def .
show ‹ e1 ≤ e2 =⇒ e2 ≤ e1 =⇒ e1 = e2› unfolding less_eq_energy_def

by (smt (z3) energy.case_eq_if energy.expand nle_le)
qed

lemma leq_components[simp]:
shows ‹ e1 ≤ e2 ≡

(modal_depth e1 ≤ modal_depth e2 ∧ br_conj_depth e1 ≤ br_conj_depth e2
∧ conj_depth e1 ≤ conj_depth e2 ∧ st_conj_depth e1 ≤ st_conj_depth e2
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∧ imm_conj_depth e1 ≤ imm_conj_depth e2 ∧ pos_conjuncts e1 ≤ pos_conjuncts e2
∧ neg_conjuncts e1 ≤ neg_conjuncts e2 ∧ neg_depth e1 ≤ neg_depth e2)›

unfolding less_eq_energy_def by (simp add: energy.case_eq_if)

lemma energy_leq_cases:
assumes

‹ modal_depth e1 ≤ modal_depth e2› ‹ br_conj_depth e1 ≤ br_conj_depth e2›
‹ conj_depth e1 ≤ conj_depth e2› ‹ st_conj_depth e1 ≤ st_conj_depth e2›
‹ imm_conj_depth e1 ≤ imm_conj_depth e2› ‹ pos_conjuncts e1 ≤ pos_conjuncts e2›
‹ neg_conjuncts e1 ≤ neg_conjuncts e2› ‹ neg_depth e1 ≤ neg_depth e2›

shows
‹ e1 ≤ e2›

using assms unfolding leq_components by blast

end

abbreviation somewhere_larger where ‹ somewhere_larger e1 e2 ≡ ¬(e1 ≥ e2)›

lemma somewhere_larger_eq:
assumes

‹ somewhere_larger e1 e2›
shows

‹ modal_depth e1 < modal_depth e2 ∨ br_conj_depth e1 < br_conj_depth e2
∨ conj_depth e1 < conj_depth e2 ∨ st_conj_depth e1 < st_conj_depth e2
∨ imm_conj_depth e1 < imm_conj_depth e2 ∨ pos_conjuncts e1 < pos_conjuncts e2
∨ neg_conjuncts e1 < neg_conjuncts e2 ∨ neg_depth e1 < neg_depth e2›

by (smt (z3) assms energy.case_eq_if less_eq_energy_def linorder_le_less_linear)

instantiation energy :: minus
begin

definition minus_energy_def[simp]: ‹ e1 - e2 ≡ E
((modal_depth e1) - (modal_depth e2))
((br_conj_depth e1) - (br_conj_depth e2))
((conj_depth e1) - (conj_depth e2))
((st_conj_depth e1) - (st_conj_depth e2))
((imm_conj_depth e1) - (imm_conj_depth e2))
((pos_conjuncts e1) - (pos_conjuncts e2))
((neg_conjuncts e1) - (neg_conjuncts e2))
((neg_depth e1) - (neg_depth e2))›

instance ..

end

Some lemmas to ease the manipulation of expressions using subtraction on energies.
lemma energy_minus[simp]:

shows ‹ E a1 b1 c1 d1 e1 f1 g1 h1 - E a2 b2 c2 d2 e2 f2 g2 h2
= E (a1 - a2) (b1 - b2) (c1 - c2) (d1 - d2)

(e1 - e2) (f1 - f2) (g1 - g2) (h1 - h2)›
unfolding minus_energy_def somewhere_larger_eq by simp

lemma minus_component_leq:
assumes

‹ s ≤ x›
‹ x ≤ y›

shows
‹ modal_depth (x - s) ≤ modal_depth (y - s)›
‹ br_conj_depth (x - s) ≤ br_conj_depth (y - s)›
‹ conj_depth (x - s) ≤ conj_depth (y - s)›
‹ st_conj_depth (x - s) ≤ st_conj_depth (y - s)›
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‹ imm_conj_depth (x - s) ≤ imm_conj_depth (y - s)›
‹ pos_conjuncts (x - s) ≤ pos_conjuncts (y - s)›
‹ neg_conjuncts (x - s) ≤ neg_conjuncts (y - s)›
‹ neg_depth (x - s) ≤ neg_depth (y - s)›

using assms by (simp_all) (metis add.commute add_diff_assoc_enat le_iff_add)+

lemma enat_diff_mono:
assumes ‹ (i::enat) ≤ j›
shows ‹ i - k ≤ j - k›

proof (cases i)
case (enat iN)
show ?thesis
proof (cases j)

case (enat jN)
then show ?thesis

using assms enat_ile by (cases k, fastforce+)
next

case infinity
then show ?thesis using assms by auto

qed
next

case infinity
hence ‹ j = ∞›

using assms by auto
then show ?thesis by auto

qed

We further show that the subtraction of energies is decreasing.
lemma energy_diff_mono:

fixes s :: energy
shows ‹ mono_on UNIV (λx. x - s)›
unfolding mono_on_def
by (auto simp add: enat_diff_mono)

lemma gets_smaller:
fixes s :: energy
shows ‹ (λx. x - s) x ≤ x›
by (auto)

(metis add.commute add_diff_cancel_enat enat_diff_mono idiff_infinity idiff_infinity_right
le_iff_add not_infinity_eq zero_le)+

lemma mono_subtract:
assumes ‹ x ≤ x’›
shows ‹ (λx. x - (E a b c d e f g h)) x ≤ (λx. x - (E a b c d e f g h)) x’›
using assms enat_diff_mono by force

Abbreviations for performing subtraction in the energy games.
abbreviation ‹ subtract_fn a b c d e f g h ≡

(λx. if somewhere_larger x (E a b c d e f g h) then None else Some (x - (E a b c d e f g h)))›

abbreviation ‹ subtract a b c d e f g h ≡ Some (subtract_fn a b c d e f g h)›

3.2 Minimum Updates

Two energy updates that replace the first component with the minimum of two other components.
definition ‹ min1_6 e ≡ case e of E a b c d e f g h ⇒ Some (E (min a f) b c d e f g h)›
definition ‹ min1_7 e ≡ case e of E a b c d e f g h ⇒ Some (E (min a g) b c d e f g h)›

Abbreviations for identity update.
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abbreviation ‹ id_up ≡ Some Some›

lift order to options
instantiation option :: (order) order
begin

definition less_eq_option_def[simp]:
‹ less_eq_option (optA :: ’a option) optB ≡

case optA of
(Some a) ⇒

(case optB of
(Some b) ⇒ a ≤ b |
None ⇒ False) |

None ⇒ True›

definition less_option_def[simp]:
‹ less_option (optA :: ’a option) optB ≡ (optA ≤ optB ∧ ¬ optB ≤ optA)›

instance proof standard
fix x y::‹ ’a option›
show ‹ (x < y) = (x ≤ y ∧ ¬ y ≤ x)› by simp

next
fix x::‹ ’a option›
show ‹ x ≤ x›

by (simp add: option.case_eq_if)
next

fix x y z::‹ ’a option›
assume ‹ x ≤ y› ‹ y ≤ z›
thus ‹ x ≤ z›

unfolding less_eq_option_def
by (metis option.case_eq_if order_trans)

next
fix x y::‹ ’a option›
assume ‹ x ≤ y› ‹ y ≤ x›
thus ‹ x = y›

unfolding less_eq_option_def
by (smt (z3) inf.absorb_iff2 le_boolD option.case_eq_if option.split_sel order_antisym)

qed

end

Again, we prove some lemmas to ease the manipulation of expressions using mininum updates.
lemma min_1_6_simps[simp]:

shows ‹ modal_depth (the (min1_6 e)) = min (modal_depth e) (pos_conjuncts e)›
‹ br_conj_depth (the (min1_6 e)) = br_conj_depth e›
‹ conj_depth (the (min1_6 e)) = conj_depth e›
‹ st_conj_depth (the (min1_6 e)) = st_conj_depth e›
‹ imm_conj_depth (the (min1_6 e)) = imm_conj_depth e›
‹ pos_conjuncts (the (min1_6 e)) = pos_conjuncts e›
‹ neg_conjuncts (the (min1_6 e)) = neg_conjuncts e›
‹ neg_depth (the (min1_6 e)) = neg_depth e›

unfolding min1_6_def by (simp_all add: energy.case_eq_if)

lemma min_1_7_simps[simp]:
shows ‹ modal_depth (the (min1_7 e)) = min (modal_depth e) (neg_conjuncts e)›

‹ br_conj_depth (the (min1_7 e)) = br_conj_depth e›
‹ conj_depth (the (min1_7 e)) = conj_depth e›
‹ st_conj_depth (the (min1_7 e)) = st_conj_depth e›
‹ imm_conj_depth (the (min1_7 e)) = imm_conj_depth e›
‹ pos_conjuncts (the (min1_7 e)) = pos_conjuncts e›
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‹ neg_conjuncts (the (min1_7 e)) = neg_conjuncts e›
‹ neg_depth (the (min1_7 e)) = neg_depth e›

unfolding min1_7_def by (simp_all add: energy.case_eq_if)

lemma min_1_6_some:
shows ‹ min1_6 e 6= None›
unfolding min1_6_def
using energy.case_eq_if by blast

lemma min_1_7_some:
shows ‹ min1_7 e 6= None›
unfolding min1_7_def
using energy.case_eq_if by blast

lemma min_1_7_lower_end:
assumes ‹ (Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7) = None›
shows ‹ neg_depth e = 0›
using assms
by (smt (verit, ccfv_threshold) bind.bind_lunit energy.sel ileI1

leq_components min_1_7_some not_gr_zero one_eSuc zero_le)

lemma min_1_7_subtr_simp:
shows ‹ (Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7)

= (if neg_depth e = 0 then None
else Some (E (min (modal_depth e) (neg_conjuncts e)) (br_conj_depth e) (conj_depth e)

(st_conj_depth e) (imm_conj_depth e) (pos_conjuncts e)
(neg_conjuncts e) (neg_depth e - 1)))›

using min_1_7_lower_end
by (auto simp add: min1_7_def)

lemma min_1_7_subtr_mono:
shows ‹ mono (λe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7)›

proof
fix e1 e2 :: energy
assume ‹ e1 ≤ e2›
thus ‹ (λe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7) e1
≤ (λe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7) e2›
unfolding min_1_7_subtr_simp
by (auto simp add: min.coboundedI1 min.coboundedI2 enat_diff_mono)

qed

lemma min_1_6_subtr_simp:
shows ‹ (Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) min1_6)

= (if br_conj_depth e = 0 ∨ conj_depth e = 0 then None
else Some (E (min (modal_depth e) (pos_conjuncts e)) (br_conj_depth e - 1)

(conj_depth e - 1) (st_conj_depth e) (imm_conj_depth e)
(pos_conjuncts e) (neg_conjuncts e) (neg_depth e)))›

by (auto simp add: min1_6_def ileI1 one_eSuc)

instantiation energy :: Sup
begin

definition ‹ Sup ee ≡ E
(Sup (modal_depth ‘ ee)) (Sup (br_conj_depth ‘ ee )) (Sup (conj_depth ‘ ee))
(Sup (st_conj_depth ‘ ee)) (Sup (imm_conj_depth ‘ ee)) (Sup (pos_conjuncts ‘ ee))
(Sup (neg_conjuncts ‘ ee)) (Sup (neg_depth ‘ ee))›

instance ..
end
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end

3.3 Components of Expressiveness Prices
theory Expressiveness_Price

imports HML_SRBB Energy
begin

The (maximal) modal depth (of observations 〈α〉, (α)) is increased on each Obs and BranchConj.
primrec

modal_depth_srbb :: ‹ (’act, ’i) hml_srbb ⇒ enat›
and modal_depth_srbb_inner :: ‹ (’act, ’i) hml_srbb_inner ⇒ enat›
and modal_depth_srbb_conjunct :: ‹ (’act, ’i) hml_srbb_conjunct ⇒ enat› where

‹ modal_depth_srbb TT = 0› |
‹ modal_depth_srbb (Internal χ) = modal_depth_srbb_inner χ› |
‹ modal_depth_srbb (ImmConj I ψs) = Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I)› |

‹ modal_depth_srbb_inner (Obs α ϕ) = 1 + modal_depth_srbb ϕ› |
‹ modal_depth_srbb_inner (Conj I ψs) =

Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I)› |
‹ modal_depth_srbb_inner (StableConj I ψs) =

Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I)› |
‹ modal_depth_srbb_inner (BranchConj a ϕ I ψs) =

Sup ({1 + modal_depth_srbb ϕ} ∪ ((modal_depth_srbb_conjunct ◦ ψs) ‘ I))› |

‹ modal_depth_srbb_conjunct (Pos χ) = modal_depth_srbb_inner χ› |
‹ modal_depth_srbb_conjunct (Neg χ) = modal_depth_srbb_inner χ›

The depth of branching conjunctions (with one observation clause not starting with 〈ε〉) is increased
on each: BranchConj.
primrec

branching_conjunction_depth :: ‹ (’a, ’s) hml_srbb ⇒ enat›
and branch_conj_depth_inner :: ‹ (’a, ’s) hml_srbb_inner ⇒ enat›
and branch_conj_depth_conjunct :: ‹ (’a, ’s) hml_srbb_conjunct ⇒ enat› where
‹ branching_conjunction_depth TT = 0› |
‹ branching_conjunction_depth (Internal χ) = branch_conj_depth_inner χ› |
‹ branching_conjunction_depth (ImmConj I ψs) =

Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I)› |

‹ branch_conj_depth_inner (Obs _ ϕ) = branching_conjunction_depth ϕ› |
‹ branch_conj_depth_inner (Conj I ψs) = Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ branch_conj_depth_inner (StableConj I ψs) =

Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ branch_conj_depth_inner (BranchConj _ ϕ I ψs) =

1 + Sup ({branching_conjunction_depth ϕ} ∪ ((branch_conj_depth_conjunct ◦ ψs) ‘ I))› |

‹ branch_conj_depth_conjunct (Pos χ) = branch_conj_depth_inner χ› |
‹ branch_conj_depth_conjunct (Neg χ) = branch_conj_depth_inner χ›

The depth of stable conjunctions (that do enforce stability by a ¬〈τ〉>-conjunct) is increased on
each StableConj. Note that if the StableConj is empty (has no other conjuncts), it is still counted.
primrec

stable_conjunction_depth :: ‹ (’a, ’s) hml_srbb ⇒ enat›
and st_conj_depth_inner :: ‹ (’a, ’s) hml_srbb_inner ⇒ enat›
and st_conj_depth_conjunct :: ‹ (’a, ’s) hml_srbb_conjunct ⇒ enat› where
‹ stable_conjunction_depth TT = 0› |
‹ stable_conjunction_depth (Internal χ) = st_conj_depth_inner χ› |
‹ stable_conjunction_depth (ImmConj I ψs) = Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I)› |

‹ st_conj_depth_inner (Obs _ ϕ) = stable_conjunction_depth ϕ› |
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‹ st_conj_depth_inner (Conj I ψs) = Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ st_conj_depth_inner (StableConj I ψs) = 1 + Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ st_conj_depth_inner (BranchConj _ ϕ I ψs) =

Sup ({stable_conjunction_depth ϕ} ∪ ((st_conj_depth_conjunct ◦ ψs) ‘ I))› |

‹ st_conj_depth_conjunct (Pos χ) = st_conj_depth_inner χ› |
‹ st_conj_depth_conjunct (Neg χ) = st_conj_depth_inner χ›

The depth of unstable conjunctions (that do not enforce stability by a ¬〈τ〉>-conjunct) is increased
on each:

• ImmConj if there are conjuncts (i.e.
∧
{} is not counted)

• Conj if there are conjuncts, (i.e. the conjunction is not empty)

• BranchConj.

primrec
unstable_conjunction_depth :: ‹ (’a, ’s) hml_srbb ⇒ enat›

and inst_conj_depth_inner :: ‹ (’a, ’s) hml_srbb_inner ⇒ enat›
and inst_conj_depth_conjunct :: ‹ (’a, ’s) hml_srbb_conjunct ⇒ enat› where
‹ unstable_conjunction_depth TT = 0› |
‹ unstable_conjunction_depth (Internal χ) = inst_conj_depth_inner χ› |
‹ unstable_conjunction_depth (ImmConj I ψs) =

(if I = {}
then 0
else 1 + Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I))› |

‹ inst_conj_depth_inner (Obs _ ϕ) = unstable_conjunction_depth ϕ› |
‹ inst_conj_depth_inner (Conj I ψs) =

(if I = {}
then 0
else 1 + Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I))› |

‹ inst_conj_depth_inner (StableConj I ψs) =
Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I)› |

‹ inst_conj_depth_inner (BranchConj _ ϕ I ψs) =
1 + Sup ({unstable_conjunction_depth ϕ} ∪ ((inst_conj_depth_conjunct ◦ ψs) ‘ I))› |

‹ inst_conj_depth_conjunct (Pos χ) = inst_conj_depth_inner χ› |
‹ inst_conj_depth_conjunct (Neg χ) = inst_conj_depth_inner χ›

The depth of immediate conjunctions (that are not preceded by 〈ε〉) is increased on each ImmConj
if there are conjuncts (i.e.

∧
{} is not counted).

primrec
immediate_conjunction_depth :: ‹ (’a, ’s) hml_srbb ⇒ enat›

and imm_conj_depth_inner :: ‹ (’a, ’s) hml_srbb_inner ⇒ enat›
and imm_conj_depth_conjunct :: ‹ (’a, ’s) hml_srbb_conjunct ⇒ enat› where
‹ immediate_conjunction_depth TT = 0› |
‹ immediate_conjunction_depth (Internal χ) = imm_conj_depth_inner χ› |
‹ immediate_conjunction_depth (ImmConj I ψs) =

(if I = {}
then 0
else 1 + Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I))› |

‹ imm_conj_depth_inner (Obs _ ϕ) = immediate_conjunction_depth ϕ› |
‹ imm_conj_depth_inner (Conj I ψs) = Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ imm_conj_depth_inner (StableConj I ψs) = Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ imm_conj_depth_inner (BranchConj _ ϕ I ψs) =

Sup ({immediate_conjunction_depth ϕ} ∪ ((imm_conj_depth_conjunct ◦ ψs) ‘ I))› |
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‹ imm_conj_depth_conjunct (Pos χ) = imm_conj_depth_inner χ› |
‹ imm_conj_depth_conjunct (Neg χ) = imm_conj_depth_inner χ›

The maximal modal depth of positive clauses in conjunctions calculates the modal depth for every
positive clause in a conjunction (Pos χ).
primrec

max_positive_conjunct_depth :: ‹ (’a, ’s) hml_srbb ⇒ enat›
and max_pos_conj_depth_inner :: ‹ (’a, ’s) hml_srbb_inner ⇒ enat›
and max_pos_conj_depth_conjunct :: ‹ (’a, ’s) hml_srbb_conjunct ⇒ enat› where
‹ max_positive_conjunct_depth TT = 0› |
‹ max_positive_conjunct_depth (Internal χ) = max_pos_conj_depth_inner χ› |
‹ max_positive_conjunct_depth (ImmConj I ψs) =

Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I)› |

‹ max_pos_conj_depth_inner (Obs _ ϕ) = max_positive_conjunct_depth ϕ› |
‹ max_pos_conj_depth_inner (Conj I ψs) =

Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ max_pos_conj_depth_inner (StableConj I ψs) =

Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ max_pos_conj_depth_inner (BranchConj _ ϕ I ψs) =

Sup ({1 + modal_depth_srbb ϕ, max_positive_conjunct_depth ϕ}
∪ ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I))› |

‹ max_pos_conj_depth_conjunct (Pos χ) = modal_depth_srbb_inner χ› |
‹ max_pos_conj_depth_conjunct (Neg χ) = max_pos_conj_depth_inner χ›

The maximal modal depth of negative clauses in conjunctions calculates the modal depth for every
negative clause in a conjunction (Neg χ).
primrec

max_negative_conjunct_depth :: ‹ (’a, ’s) hml_srbb ⇒ enat›
and max_neg_conj_depth_inner :: ‹ (’a, ’s) hml_srbb_inner ⇒ enat›
and max_neg_conj_depth_conjunct :: ‹ (’a, ’s) hml_srbb_conjunct ⇒ enat› where
‹ max_negative_conjunct_depth TT = 0› |
‹ max_negative_conjunct_depth (Internal χ) = max_neg_conj_depth_inner χ› |
‹ max_negative_conjunct_depth (ImmConj I ψs) =

Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I)› |

‹ max_neg_conj_depth_inner (Obs _ ϕ) = max_negative_conjunct_depth ϕ› |
‹ max_neg_conj_depth_inner (Conj I ψs) =

Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ max_neg_conj_depth_inner (StableConj I ψs) =

Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I)› |
‹ max_neg_conj_depth_inner (BranchConj _ ϕ I ψs) =

Sup ({max_negative_conjunct_depth ϕ} ∪ ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I))› |

‹ max_neg_conj_depth_conjunct (Pos χ) = max_neg_conj_depth_inner χ› |
‹ max_neg_conj_depth_conjunct (Neg χ) = modal_depth_srbb_inner χ›

The depth of negations on a path of the syntax tree) is increased on each Neg χ.
primrec

negation_depth :: ‹ (’a, ’s) hml_srbb ⇒ enat›
and neg_depth_inner :: ‹ (’a, ’s) hml_srbb_inner ⇒ enat›
and neg_depth_conjunct :: ‹ (’a, ’s) hml_srbb_conjunct ⇒ enat› where
‹ negation_depth TT = 0› |
‹ negation_depth (Internal χ) = neg_depth_inner χ› |
‹ negation_depth (ImmConj I ψs) = Sup ((neg_depth_conjunct ◦ ψs) ‘ I)› |

‹ neg_depth_inner (Obs _ ϕ) = negation_depth ϕ› |
‹ neg_depth_inner (Conj I ψs) = Sup ((neg_depth_conjunct ◦ ψs) ‘ I)› |
‹ neg_depth_inner (StableConj I ψs) = Sup ((neg_depth_conjunct ◦ ψs) ‘ I)› |
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‹ neg_depth_inner (BranchConj _ ϕ I ψs) =
Sup ({negation_depth ϕ} ∪ ((neg_depth_conjunct ◦ ψs) ‘ I))› |

‹ neg_depth_conjunct (Pos χ) = neg_depth_inner χ› |
‹ neg_depth_conjunct (Neg χ) = 1 + neg_depth_inner χ›

3.4 Properties of Price Components
lemma ‹ modal_depth_srbb TT = 0›

using Sup_enat_def by simp

lemma ‹ modal_depth_srbb (Internal (Obs α (Internal (BranchConj β TT {} ψs2)))) = 2›
using Sup_enat_def by simp

fun observe_n_alphas :: ‹ ’a ⇒ nat ⇒ (’a, nat) hml_srbb› where
‹ observe_n_alphas α 0 = TT› |
‹ observe_n_alphas α (Suc n) = Internal (Obs α (observe_n_alphas α n))›

lemma obs_n_α_depth_n: ‹ modal_depth_srbb (observe_n_alphas α n) = n›
proof (induct n)

case 0
show ?case unfolding observe_n_alphas.simps(1) and modal_depth_srbb.simps(2)

using zero_enat_def and Sup_enat_def by force
next

case (Suc n)
then show ?case

using eSuc_enat plus_1_eSuc(1) by auto
qed

lemma sup_nats_in_enats_infinite: ‹ (SUP x∈�. enat x) = ∞›
by (metis Nats_infinite Sup_enat_def enat.inject finite.emptyI finite_imageD inj_on_def)

lemma sucs_of_nats_in_enats_sup_infinite: ‹ (SUP x∈�. 1 + enat x) = ∞›
using sup_nats_in_enats_infinite
by (metis Sup.SUP_cong eSuc_Sup eSuc_infinity image_image image_is_empty plus_1_eSuc(1))

lemma ‹ modal_depth_srbb (ImmConj � (λn. Pos (Obs α (observe_n_alphas α n)))) = ∞›
unfolding modal_depth_srbb.simps(3)

and o_def
and modal_depth_srbb_conjunct.simps(1)
and modal_depth_srbb_inner.simps(1)
and obs_n_α_depth_n

by (metis sucs_of_nats_in_enats_sup_infinite)

lemma modal_depth_dominates_pos_conjuncts:
fixes
ϕ::‹ (’a, ’s) hml_srbb› and
χ::‹ (’a, ’s) hml_srbb_inner› and
ψ::‹ (’a, ’s) hml_srbb_conjunct›

shows
‹ (max_positive_conjunct_depth ϕ ≤ modal_depth_srbb ϕ)
∧ (max_pos_conj_depth_inner χ ≤ modal_depth_srbb_inner χ)
∧ (max_pos_conj_depth_conjunct ψ ≤ modal_depth_srbb_conjunct ψ)›

using hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct[of
‹λϕ::(’a, ’s) hml_srbb. max_positive_conjunct_depth ϕ ≤ modal_depth_srbb ϕ›
‹λχ. max_pos_conj_depth_inner χ ≤ modal_depth_srbb_inner χ›
‹λψ. max_pos_conj_depth_conjunct ψ ≤ modal_depth_srbb_conjunct ψ› ]

by (auto simp add: SUP_mono’ add_increasing sup.coboundedI1 sup.coboundedI2)

lemma modal_depth_dominates_neg_conjuncts:
fixes
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ϕ::‹ (’a, ’s) hml_srbb› and
χ::‹ (’a, ’s) hml_srbb_inner› and
ψ::‹ (’a, ’s) hml_srbb_conjunct›

shows
‹ (max_negative_conjunct_depth ϕ ≤ modal_depth_srbb ϕ)
∧ (max_neg_conj_depth_inner χ ≤ modal_depth_srbb_inner χ)
∧ (max_neg_conj_depth_conjunct ψ ≤ modal_depth_srbb_conjunct ψ)›

using hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct[of
‹λϕ::(’a, ’s) hml_srbb. max_negative_conjunct_depth ϕ ≤ modal_depth_srbb ϕ›
‹λχ. max_neg_conj_depth_inner χ ≤ modal_depth_srbb_inner χ›
‹λψ. max_neg_conj_depth_conjunct ψ ≤ modal_depth_srbb_conjunct ψ› ]

by (auto simp add: SUP_mono’ add_increasing sup.coboundedI1 sup.coboundedI2)

3.5 Expressiveness Price Function

The expressiveness_price function combines the eight component functions into one.
fun expressiveness_price :: ‹ (’a, ’s) hml_srbb ⇒ energy› where

‹ expressiveness_price ϕ =
E (modal_depth_srbb ϕ)

(branching_conjunction_depth ϕ)
(unstable_conjunction_depth ϕ)
(stable_conjunction_depth ϕ)
(immediate_conjunction_depth ϕ)
(max_positive_conjunct_depth ϕ)
(max_negative_conjunct_depth ϕ)
(negation_depth ϕ)›

Here, we can see the decomposed price of an immediate conjunction:
lemma expressiveness_price_ImmConj_def:

shows ‹ expressiveness_price (ImmConj I ψs) = E
(Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I))
(Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I))
(if I = {} then 0 else 1 + Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I))
(if I = {} then 0 else 1 + Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((neg_depth_conjunct ◦ ψs) ‘ I))› by simp

lemma expressiveness_price_ImmConj_non_empty_def:
assumes ‹ I 6= {}›
shows ‹ expressiveness_price (ImmConj I ψs) = E

(Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I))
(Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I))
(1 + Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I))
(1 + Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((neg_depth_conjunct ◦ ψs) ‘ I))› using assms by simp

lemma expressiveness_price_ImmConj_empty_def:
assumes ‹ I = {}›
shows ‹ expressiveness_price (ImmConj I ψs) = E 0 0 0 0 0 0 0 0› using assms
unfolding expressiveness_price_ImmConj_def by (simp add: bot_enat_def)

Formalizing HMLSRBB by mutually recursive data types leads to expressiveness price functions of
these other types and corresponding definitions and lemmas.
fun expr_pr_inner :: ‹ (’a, ’s) hml_srbb_inner ⇒ energy› where

29



‹ expr_pr_inner χ =
E (modal_depth_srbb_inner χ)

(branch_conj_depth_inner χ)
(inst_conj_depth_inner χ)
(st_conj_depth_inner χ)
(imm_conj_depth_inner χ)
(max_pos_conj_depth_inner χ)
(max_neg_conj_depth_inner χ)
(neg_depth_inner χ)›

fun expr_pr_conjunct :: ‹ (’a, ’s) hml_srbb_conjunct ⇒ energy› where
‹ expr_pr_conjunct ψ =

E (modal_depth_srbb_conjunct ψ)
(branch_conj_depth_conjunct ψ)
(inst_conj_depth_conjunct ψ)
(st_conj_depth_conjunct ψ)
(imm_conj_depth_conjunct ψ)
(max_pos_conj_depth_conjunct ψ)
(max_neg_conj_depth_conjunct ψ)
(neg_depth_conjunct ψ)›

3.6 Prices of Certain Formulas
context lts_tau
begin

For example, here, we establish that the expressiveness price of Internal χ is equal to the expres-
siveness price of χ.
lemma expr_internal_eq:

shows ‹ expressiveness_price (Internal χ) = expr_pr_inner χ›
by auto

lemma expr_pos:
assumes ‹ expr_pr_inner χ ≤ the (min1_6 e)›
shows ‹ expr_pr_conjunct (Pos χ) ≤ e›
using assms by auto

lemma expr_neg:
assumes

‹ expr_pr_inner χ ≤ e’›
‹ (Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7) = Some e’›

shows ‹ expr_pr_conjunct (Neg χ) ≤ e›
proof -

have expr_neg: ‹ expr_pr_conjunct (Neg χ) =
E (modal_depth_srbb_conjunct (Neg χ))

(branch_conj_depth_conjunct (Neg χ))
(inst_conj_depth_conjunct (Neg χ))
(st_conj_depth_conjunct (Neg χ))
(imm_conj_depth_conjunct (Neg χ))
(max_pos_conj_depth_conjunct (Neg χ))
(max_neg_conj_depth_conjunct (Neg χ))
(neg_depth_conjunct (Neg χ))›

using expr_pr_conjunct.simps by blast
have neg_ups:

‹ modal_depth_srbb_conjunct (Neg χ) = modal_depth_srbb_inner χ›
‹ (branch_conj_depth_conjunct (Neg χ)) = branch_conj_depth_inner χ›
‹ inst_conj_depth_conjunct (Neg χ) = inst_conj_depth_inner χ›
‹ st_conj_depth_conjunct (Neg χ) = st_conj_depth_inner χ›
‹ imm_conj_depth_conjunct (Neg χ) = imm_conj_depth_inner χ›
‹ max_pos_conj_depth_conjunct (Neg χ) = max_pos_conj_depth_inner χ›
‹ max_neg_conj_depth_conjunct (Neg χ) = modal_depth_srbb_inner χ›
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‹ neg_depth_conjunct (Neg χ) = 1 + neg_depth_inner χ›
by simp+

obtain e1 e2 e3 e4 e5 e6 e7 e8 where e_def: ‹ e = E e1 e2 e3 e4 e5 e6 e7 e8›
by (metis energy.exhaust_sel)

hence is_some: ‹ (subtract_fn 0 0 0 0 0 0 0 1 e = Some (E e1 e2 e3 e4 e5 e6 e7 (e8-1)))›
using assms bind_eq_None_conv by fastforce

hence ‹ modal_depth_srbb_inner χ ≤ (min e1 e7)›
using assms expr_pr_inner.simps leq_components min_1_7_subtr_simp e_def
by (metis energy.sel(1) energy.sel(7) option.discI option.inject)

moreover have ‹ neg_depth_inner χ ≤ (e8-1)›
using e_def is_some energy_minus leq_components min_1_7_simps assms
by (smt (verit, ccfv_threshold) bind.bind_lunit energy.sel(8) expr_pr_inner.simps option.sel)

moreover hence ‹ neg_depth_conjunct (Neg χ) ≤ e8›
using ‹ neg_depth_conjunct (Neg χ) = 1 + neg_depth_inner χ›
by (metis is_some add_diff_assoc_enat add_diff_cancel_enat e_def enat.simps(3)

enat_defs(2) enat_diff_mono energy.sel(8) leq_components linorder_not_less
option.distinct(1) order_le_less)

ultimately show ‹ expr_pr_conjunct (Neg χ) ≤ e›
using expr_neg e_def is_some assms neg_ups assms leq_components min_1_7_subtr_simp
by (metis energy.sel expr_pr_inner.simps min.bounded_iff option.distinct(1) option.inject)

qed

lemma expr_obs:
assumes

‹ expressiveness_price ϕ ≤ e’›
‹ subtract_fn 1 0 0 0 0 0 0 0 e = Some e’›

shows ‹ expr_pr_inner (Obs α ϕ) ≤ e›
using assms
by (simp) (metis add_diff_cancel_enat add_mono_thms_linordered_semiring(1)

enat.simps(3) enat_defs(2) energy.sel idiff_0_right
le_iff_add le_numeral_extra(4) minus_energy_def option.discI
option.inject)

lemma expr_st_conj:
assumes

‹ subtract_fn 0 0 0 1 0 0 0 0 e = Some e’›
‹ I 6= {}›
‹ ∀ q ∈ I. expr_pr_conjunct (ψs q) ≤ e’›

shows
‹ expr_pr_inner (StableConj I ψs) ≤ e›

proof -
have st_conj_upds:

‹ modal_depth_srbb_inner (StableConj I ψs) = Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I)›
‹ branch_conj_depth_inner (StableConj I ψs) = Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ inst_conj_depth_inner (StableConj I ψs) = Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ st_conj_depth_inner (StableConj I ψs) = 1 + Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ imm_conj_depth_inner (StableConj I ψs) = Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ max_pos_conj_depth_inner (StableConj I ψs) = Sup ((max_pos_conj_depth_conjunct◦ψs) ‘ I)›
‹ max_neg_conj_depth_inner (StableConj I ψs) = Sup ((max_neg_conj_depth_conjunct◦ψs) ‘ I)›
‹ neg_depth_inner (StableConj I ψs) = Sup ((neg_depth_conjunct ◦ ψs) ‘ I)›
by force+

obtain e1 e2 e3 e4 e5 e6 e7 e8 where e_def: ‹ e = E e1 e2 e3 e4 e5 e6 e7 e8›
using energy.exhaust_sel by blast

hence is_some: ‹ subtract_fn 0 0 0 1 0 0 0 0 e = Some (E e1 e2 e3 (e4-1) e5 e6 e7 e8)›
using assms minus_energy_def
by (smt (verit, del_insts) energy_minus idiff_0_right option.distinct(1))

hence
‹ ∀ i ∈ I. modal_depth_srbb_conjunct (ψs i) ≤ e1›
‹ ∀ i ∈ I. branch_conj_depth_conjunct (ψs i) ≤ e2›
‹ ∀ i ∈ I. inst_conj_depth_conjunct (ψs i) ≤ e3›
‹ ∀ i ∈ I. st_conj_depth_conjunct (ψs i) ≤ (e4 - 1)›
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‹ ∀ i ∈ I. imm_conj_depth_conjunct (ψs i) ≤ e5›
‹ ∀ i ∈ I. max_pos_conj_depth_conjunct (ψs i) ≤ e6›
‹ ∀ i ∈ I. max_neg_conj_depth_conjunct (ψs i) ≤ e7›
‹ ∀ i ∈ I. neg_depth_conjunct (ψs i) ≤ e8›
using assms unfolding leq_components by auto

hence sups:
‹ Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I) ≤ e1›
‹ Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e2›
‹ Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e3›
‹ Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I) ≤ (e4 - 1)›
‹ Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e5›
‹ Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e6›
‹ Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e7›
‹ Sup ((neg_depth_conjunct ◦ ψs) ‘ I) ≤ e8›
by (simp add: Sup_le_iff)+

hence ‹ st_conj_depth_inner (StableConj I ψs) ≤ e4›
using e_def is_some minus_energy_def leq_components st_conj_upds(4)
by (metis add_diff_cancel_enat add_left_mono enat.simps(3) enat_defs(2) energy.sel(4)

le_iff_add option.distinct(1))
then show ?thesis

using st_conj_upds sups
by (simp add: e_def)

qed

lemma expr_imm_conj:
assumes

‹ subtract_fn 0 0 0 0 1 0 0 0 e = Some e’›
‹ I 6= {}›
‹ expr_pr_inner (Conj I ψs) ≤ e’›

shows ‹ expressiveness_price (ImmConj I ψs) ≤ e›
proof -

have conj_upds:
‹ modal_depth_srbb_inner (Conj I ψs) = Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I)›
‹ branch_conj_depth_inner (Conj I ψs) = Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ inst_conj_depth_inner (Conj I ψs) = 1 + Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ st_conj_depth_inner (Conj I ψs) = Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ imm_conj_depth_inner (Conj I ψs) = Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ max_pos_conj_depth_inner (Conj I ψs) = Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ max_neg_conj_depth_inner (Conj I ψs) = Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ neg_depth_inner (Conj I ψs) = Sup ((neg_depth_conjunct ◦ ψs) ‘ I)›
using assms
by force+

have imm_conj_upds:
‹ modal_depth_srbb (ImmConj I ψs) = Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I)›
‹ branching_conjunction_depth (ImmConj I ψs) = Sup ((branch_conj_depth_conjunct◦ψs) ‘ I)›
‹ unstable_conjunction_depth (ImmConj I ψs) = 1 + Sup ((inst_conj_depth_conjunct◦ψs) ‘ I)›
‹ stable_conjunction_depth (ImmConj I ψs) = Sup ((st_conj_depth_conjunct◦ψs) ‘ I)›
‹ immediate_conjunction_depth (ImmConj I ψs) = 1 + Sup ((imm_conj_depth_conjunct◦ψs) ‘ I)›
‹ max_positive_conjunct_depth (ImmConj I ψs) = Sup ((max_pos_conj_depth_conjunct◦ψs) ‘ I)›
‹ max_negative_conjunct_depth (ImmConj I ψs) = Sup ((max_neg_conj_depth_conjunct◦ψs) ‘ I)›
‹ negation_depth (ImmConj I ψs) = Sup ((neg_depth_conjunct◦ψs) ‘ I)›
using assms
by force+

obtain e1 e2 e3 e4 e5 e6 e7 e8 where e_def: ‹ e = E e1 e2 e3 e4 e5 e6 e7 e8›
using assms by (metis energy.exhaust_sel)

hence is_some: ‹ (e - (E 0 0 0 0 1 0 0 0)) = (E e1 e2 e3 e4 (e5-1) e6 e7 e8)›
using minus_energy_def
by simp

hence ‹ e5>0› using assms(1) e_def leq_components by auto
have

‹ E (modal_depth_srbb_inner (Conj I ψs))
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(branch_conj_depth_inner (Conj I ψs))
(inst_conj_depth_inner (Conj I ψs))
(st_conj_depth_inner (Conj I ψs))
(imm_conj_depth_inner (Conj I ψs))
(max_pos_conj_depth_inner (Conj I ψs))
(max_neg_conj_depth_inner (Conj I ψs))
(neg_depth_inner (Conj I ψs)) ≤ (E e1 e2 e3 e4 (e5-1) e6 e7 e8)›

using is_some assms
by (metis expr_pr_inner.simps option.discI option.inject)

hence
‹ (modal_depth_srbb_inner (Conj I ψs))≤ e1›
‹ (branch_conj_depth_inner (Conj I ψs)) ≤ e2›
‹ (inst_conj_depth_inner (Conj I ψs)) ≤ e3›
‹ (st_conj_depth_inner (Conj I ψs))≤ e4›
‹ (imm_conj_depth_inner (Conj I ψs))≤ (e5-1)›
‹ (max_pos_conj_depth_inner (Conj I ψs)) ≤ e6›
‹ (max_neg_conj_depth_inner (Conj I ψs)) ≤ e7›
‹ (neg_depth_inner (Conj I ψs))≤ e8›
by auto

hence E:
‹ Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I) ≤ e1›
‹ Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e2›
‹ 1 + Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e3›
‹ Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e4›
‹ Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I) ≤ (e5-1)›
‹ Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e6›
‹ Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e7›
‹ Sup ((neg_depth_conjunct ◦ ψs) ‘ I) ≤ e8›
using conj_upds by force+

from this(5) have ‹ (1 + Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I)) ≤ e5›
using assms(1) ‹ e5>0› is_some e_def add.right_neutral

add_diff_cancel_enat enat_add_left_cancel_le ileI1 le_iff_add plus_1_eSuc(1)
by metis

thus ‹ expressiveness_price (ImmConj I ψs) ≤ e› using imm_conj_upds E
by (metis e_def energy.sel expressiveness_price.elims leD somewhere_larger_eq)

qed

lemma expr_conj:
assumes

‹ subtract_fn 0 0 1 0 0 0 0 0 e = Some e’›
‹ I 6= {}›
‹ ∀ q ∈ I. expr_pr_conjunct (ψs q) ≤ e’›

shows ‹ expr_pr_inner (Conj I ψs) ≤ e›
proof -

have conj_upds:
‹ modal_depth_srbb_inner (Conj I ψs) = Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I)›
‹ branch_conj_depth_inner (Conj I ψs) = Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ inst_conj_depth_inner (Conj I ψs) = 1 + Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ st_conj_depth_inner (Conj I ψs) = Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ imm_conj_depth_inner (Conj I ψs) = Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ max_pos_conj_depth_inner (Conj I ψs) = Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ max_neg_conj_depth_inner (Conj I ψs) = Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I)›
‹ neg_depth_inner (Conj I ψs) = Sup ((neg_depth_conjunct ◦ ψs) ‘ I)›
using assms by force+

obtain e1 e2 e3 e4 e5 e6 e7 e8 where e_def: ‹ e = E e1 e2 e3 e4 e5 e6 e7 e8›
using energy.exhaust_sel by metis

hence is_some: ‹ e - (E 0 0 1 0 0 0 0 0) = E e1 e2 (e3-1) e4 e5 e6 e7 e8›
using minus_energy_def by simp

hence ‹ e3>0› using assms(1) e_def leq_components by auto
hence

‹ ∀ i ∈ I. modal_depth_srbb_conjunct (ψs i) ≤ e1›
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‹ ∀ i ∈ I. branch_conj_depth_conjunct (ψs i) ≤ e2›
‹ ∀ i ∈ I. inst_conj_depth_conjunct (ψs i) ≤ (e3-1)›
‹ ∀ i ∈ I. st_conj_depth_conjunct (ψs i) ≤ e4›
‹ ∀ i ∈ I. imm_conj_depth_conjunct (ψs i) ≤ e5›
‹ ∀ i ∈ I. max_pos_conj_depth_conjunct (ψs i) ≤ e6›
‹ ∀ i ∈ I. max_neg_conj_depth_conjunct (ψs i) ≤ e7›
‹ ∀ i ∈ I. neg_depth_conjunct (ψs i) ≤ e8›
using assms is_some energy.sel leq_components
by (metis expr_pr_conjunct.elims option.distinct(1) option.inject)+

hence sups:
‹ Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I) ≤ e1›
‹ Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e2›
‹ Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I) ≤ (e3-1)›
‹ Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e4›
‹ Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e5›
‹ Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e6›
‹ Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I) ≤ e7›
‹ Sup ((neg_depth_conjunct ◦ ψs) ‘ I) ≤ e8›
by (simp add: Sup_le_iff)+

hence ‹ inst_conj_depth_inner (Conj I ψs) ≤ e3›
using ‹ e3>0› is_some e_def
unfolding conj_upds(3)
by (metis add.right_neutral add_diff_cancel_enat enat_add_left_cancel_le ileI1

le_iff_add plus_1_eSuc(1))
then show ?thesis

using conj_upds sups
by (simp add: e_def)

qed

lemma expr_br_conj:
assumes

‹ subtract_fn 0 1 1 0 0 0 0 0 e = Some e’›
‹ min1_6 e’ = Some e’’›
‹ subtract_fn 1 0 0 0 0 0 0 0 e’’ = Some e’’’›
‹ expressiveness_price ϕ ≤ e’’’›
‹ ∀ q ∈ Q. expr_pr_conjunct (Φ q) ≤ e’›
‹ 1 + modal_depth_srbb ϕ ≤ pos_conjuncts e›

shows ‹ expr_pr_inner (BranchConj α ϕ Q Φ) ≤ e›
proof -

obtain e1 e2 e3 e4 e5 e6 e7 e8 where e_def: ‹ e = E e1 e2 e3 e4 e5 e6 e7 e8›
by (smt (z3) energy.exhaust)

hence e’’’_def: ‹ e’’’ = (E ((min e1 e6)-1) (e2-1) (e3-1) e4 e5 e6 e7 e8)›
using minus_energy_def
by (smt (z3) assms energy.sel idiff_0_right min_1_6_simps option.distinct(1) option.sel)

hence min_vals: ‹ the (min1_6 (e - E 0 1 1 0 0 0 0 0)) - (E 1 0 0 0 0 0 0 0)
= (E ((min e1 e6)-1) (e2-1) (e3-1) e4 e5 e6 e7 e8)›

using assms
by (metis not_Some_eq option.sel)

hence ‹ 0 < e1› ‹ 0 < e2› ‹ 0 < e3› ‹ 0 < e6›
using assms energy.sel min_1_6_simps
unfolding e_def minus_energy_def leq_components
by (metis (no_types, lifting) gr_zeroI idiff_0_right min_enat_simps(3)

not_one_le_zero option.distinct(1) option.sel, auto)
have e_comp: ‹ e - (E 0 1 1 0 0 0 0 0) = E e1 (e2-1) (e3-1) e4 e5 e6 e7 e8› using e_def

by simp
have conj:

‹ E (modal_depth_srbb ϕ)
(branching_conjunction_depth ϕ)
(unstable_conjunction_depth ϕ)
(stable_conjunction_depth ϕ)
(immediate_conjunction_depth ϕ)
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(max_positive_conjunct_depth ϕ)
(max_negative_conjunct_depth ϕ)
(negation_depth ϕ)
≤ ((E ((min e1 e6)-1) (e2-1) (e3-1) e4 e5 e6 e7 e8))›

using assms e’’’_def by force
hence conj_single:

‹ modal_depth_srbb ϕ ≤ ((min e1 e6)-1)›
‹ branching_conjunction_depth ϕ ≤ e2 -1›
‹ (unstable_conjunction_depth ϕ) ≤ e3-1›
‹ (stable_conjunction_depth ϕ) ≤ e4›
‹ (immediate_conjunction_depth ϕ) ≤ e5›
‹ (max_positive_conjunct_depth ϕ) ≤ e6›
‹ (max_negative_conjunct_depth ϕ) ≤ e7›
‹ (negation_depth ϕ) ≤ e8›
using leq_components by auto

have ‹ 0 < (min e1 e6)› using ‹ 0 < e1› ‹ 0 < e6›
using min_less_iff_conj by blast

hence ‹ 1 + modal_depth_srbb ϕ ≤ (min e1 e6)›
using conj_single add.commute add_diff_assoc_enat add_diff_cancel_enat

add_right_mono conj_single(2) i1_ne_infinity ileI1 one_eSuc
by (metis (no_types, lifting))

hence ‹ 1 + modal_depth_srbb ϕ ≤ e1› ‹ 1 + modal_depth_srbb ϕ ≤ e6›
using min.bounded_iff by blast+

from conj have ‹ 1 + branching_conjunction_depth ϕ ≤ e2›
by (metis ‹ 0 < e2› add.commute add_diff_assoc_enat add_diff_cancel_enat

add_right_mono conj_single(2) i1_ne_infinity ileI1 one_eSuc)
from conj_single have ‹ 1 + unstable_conjunction_depth ϕ ≤ e3›

using ‹ 0 < e3› add.commute add_diff_assoc_enat add_diff_cancel_enat
add_right_mono conj_single(2) i1_ne_infinity ileI1 one_eSuc

by (metis (no_types, lifting))
have branch: ‹ ∀ q∈Q.

E (modal_depth_srbb_conjunct (Φ q))
(branch_conj_depth_conjunct (Φ q))
(inst_conj_depth_conjunct (Φ q))
(st_conj_depth_conjunct (Φ q))
(imm_conj_depth_conjunct (Φ q))
(max_pos_conj_depth_conjunct (Φ q))
(max_neg_conj_depth_conjunct (Φ q))
(neg_depth_conjunct (Φ q))

≤ (E e1 (e2-1) (e3-1) e4 e5 e6 e7 e8)›
using assms e_def e_comp
by (metis expr_pr_conjunct.simps option.distinct(1) option.sel)

hence branch_single:
‹ ∀ q∈Q. (modal_depth_srbb_conjunct (Φ q)) ≤ e1›
‹ ∀ q∈Q. (branch_conj_depth_conjunct (Φ q)) ≤ (e2-1)›
‹ ∀ q∈Q. (inst_conj_depth_conjunct (Φ q)) ≤ (e3-1)›
‹ ∀ q∈Q. (st_conj_depth_conjunct (Φ q)) ≤ e4›
‹ ∀ q∈Q. (imm_conj_depth_conjunct (Φ q)) ≤ e5›
‹ ∀ q∈Q. (max_pos_conj_depth_conjunct (Φ q)) ≤ e6›
‹ ∀ q∈Q. (max_neg_conj_depth_conjunct (Φ q)) ≤ e7›
‹ ∀ q∈Q. (neg_depth_conjunct (Φ q)) ≤ e8›
by auto

hence ‹ ∀ q∈Q. (1 + branch_conj_depth_conjunct (Φ q)) ≤ e2›
by (metis ‹ 0 < e2› add.commute add_diff_assoc_enat add_diff_cancel_enat

add_right_mono i1_ne_infinity ileI1 one_eSuc)
from branch_single have ‹ ∀ q∈Q. (1 + inst_conj_depth_conjunct (Φ q)) ≤ e3›

using ‹ 0 < e3›
by (metis add.commute add_diff_assoc_enat add_diff_cancel_enat add_right_mono

i1_ne_infinity ileI1 one_eSuc)
have

‹ expr_pr_inner (BranchConj α ϕ Q Φ)
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= E (modal_depth_srbb_inner (BranchConj α ϕ Q Φ))
(branch_conj_depth_inner (BranchConj α ϕ Q Φ))
(inst_conj_depth_inner (BranchConj α ϕ Q Φ))
(st_conj_depth_inner (BranchConj α ϕ Q Φ))
(imm_conj_depth_inner (BranchConj α ϕ Q Φ))
(max_pos_conj_depth_inner (BranchConj α ϕ Q Φ))
(max_neg_conj_depth_inner (BranchConj α ϕ Q Φ))
(neg_depth_inner (BranchConj α ϕ Q Φ))› by simp

hence expr:
‹ expr_pr_inner (BranchConj α ϕ Q Φ)
= E (Sup ({1 + modal_depth_srbb ϕ} ∪ ((modal_depth_srbb_conjunct ◦ Φ) ‘ Q)))

(1 + Sup ({branching_conjunction_depth ϕ} ∪ ((branch_conj_depth_conjunct ◦ Φ) ‘ Q)))
(1 + Sup ({unstable_conjunction_depth ϕ} ∪ ((inst_conj_depth_conjunct ◦ Φ) ‘ Q)))
(Sup ({stable_conjunction_depth ϕ} ∪ ((st_conj_depth_conjunct ◦ Φ) ‘ Q)))
(Sup ({immediate_conjunction_depth ϕ} ∪ ((imm_conj_depth_conjunct ◦ Φ) ‘ Q)))
(Sup ({1 + modal_depth_srbb ϕ, max_positive_conjunct_depth ϕ}
∪ ((max_pos_conj_depth_conjunct ◦ Φ) ‘ Q)))

(Sup ({max_negative_conjunct_depth ϕ} ∪ ((max_neg_conj_depth_conjunct ◦ Φ) ‘ Q)))
(Sup ({negation_depth ϕ} ∪ ((neg_depth_conjunct ◦ Φ) ‘ Q)))› by auto

from branch_single ‹ 1 + modal_depth_srbb ϕ ≤ e1›
have ‹ ∀ x ∈ ({1 + modal_depth_srbb ϕ} ∪ ((modal_depth_srbb_conjunct ◦ Φ) ‘ Q)). x ≤ e1›
by fastforce

hence e1_le:
‹ (Sup ({1 + modal_depth_srbb ϕ} ∪ ((modal_depth_srbb_conjunct ◦ Φ) ‘ Q))) ≤ e1›

using Sup_least by blast
have ‹ ∀ x ∈ {branching_conjunction_depth ϕ} ∪ ((branch_conj_depth_conjunct ◦ Φ) ‘ Q).

x ≤ e2 - 1›
using branch_single conj_single comp_apply image_iff insertE by auto

hence e2_le:
‹ 1 + Sup ({branching_conjunction_depth ϕ}
∪ ((branch_conj_depth_conjunct ◦ Φ) ‘ Q)) ≤ e2›

using Sup_least
by (metis Un_insert_left ‹ 0 < e2› add.commute eSuc_minus_1 enat_add_left_cancel_le

ileI1 le_iff_add one_eSuc plus_1_eSuc(2) sup_bot_left)
have ‹ ∀ x ∈ ({unstable_conjunction_depth ϕ} ∪ ((inst_conj_depth_conjunct ◦ Φ) ‘ Q)).

x ≤ e3-1›
using conj_single branch_single
using comp_apply image_iff insertE by auto

hence e3_le:
‹ 1 + Sup ({unstable_conjunction_depth ϕ} ∪ ((inst_conj_depth_conjunct ◦ Φ) ‘ Q)) ≤ e3›

using Un_insert_left ‹ 0<e3› add.commute eSuc_minus_1 enat_add_left_cancel_le ileI1
le_iff_add one_eSuc plus_1_eSuc(2) sup_bot_left

by (metis Sup_least)
have fa:

‹ ∀ x ∈ ({stable_conjunction_depth ϕ} ∪ ((st_conj_depth_conjunct ◦ Φ) ‘ Q)). x ≤ e4›
‹ ∀ x ∈ ({immediate_conjunction_depth ϕ} ∪ ((imm_conj_depth_conjunct ◦ Φ) ‘ Q)). x ≤ e5›
‹ ∀ x ∈ ({1 + modal_depth_srbb ϕ, max_positive_conjunct_depth ϕ}

∪ ((max_pos_conj_depth_conjunct ◦ Φ) ‘ Q)). x ≤ e6›
‹ ∀ x ∈ ({max_negative_conjunct_depth ϕ}

∪ ((max_neg_conj_depth_conjunct ◦ Φ) ‘ Q)). x ≤ e7›
‹ ∀ x ∈ ({negation_depth ϕ} ∪ ((neg_depth_conjunct ◦ Φ) ‘ Q)). x ≤ e8›

using conj_single branch_single ‹ 1 + modal_depth_srbb ϕ ≤ e6› by auto
hence

‹ (Sup ({stable_conjunction_depth ϕ} ∪ ((st_conj_depth_conjunct ◦ Φ) ‘ Q))) ≤ e4›
‹ (Sup ({immediate_conjunction_depth ϕ} ∪ ((imm_conj_depth_conjunct ◦ Φ) ‘ Q))) ≤ e5›
‹ (Sup ({1 + modal_depth_srbb ϕ, max_positive_conjunct_depth ϕ}

∪ ((max_pos_conj_depth_conjunct ◦ Φ) ‘ Q))) ≤ e6›
‹ (Sup ({max_negative_conjunct_depth ϕ} ∪ ((max_neg_conj_depth_conjunct ◦ Φ) ‘ Q))) ≤ e7›
‹ (Sup ({negation_depth ϕ} ∪ ((neg_depth_conjunct ◦ Φ) ‘ Q))) ≤ e8›
using Sup_least
by metis+
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thus ‹ expr_pr_inner (BranchConj α ϕ Q Φ) ≤ e›
using expr e3_le e2_le e1_le e_def energy.sel leq_components by presburger

qed

lemma expressiveness_price_ImmConj_geq_parts:
assumes ‹ i ∈ I›
shows ‹ expressiveness_price (ImmConj I ψs) - E 0 0 1 0 1 0 0 0 ≥ expr_pr_conjunct (ψs i)›

proof -
from assms have ‹ I 6= {}› by blast
from expressiveness_price_ImmConj_non_empty_def[OF ‹ I 6= {}› ]
have ‹ expressiveness_price (ImmConj I ψs) ≥ E 0 0 1 0 1 0 0 0›

using energy_leq_cases by force
hence
‹ expressiveness_price (ImmConj I ψs) - E 0 0 1 0 1 0 0 0 = E

(Sup ((modal_depth_srbb_conjunct ◦ ψs) ‘ I))
(Sup ((branch_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((inst_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((st_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((imm_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((max_pos_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((max_neg_conj_depth_conjunct ◦ ψs) ‘ I))
(Sup ((neg_depth_conjunct ◦ ψs) ‘ I))›
unfolding expressiveness_price_ImmConj_non_empty_def[OF ‹ I 6= {}› ]
by simp

also have ‹ ... ≥ expr_pr_conjunct (ψs i)›
using assms ‹ I 6= {}› SUP_upper unfolding leq_components by fastforce

finally show ?thesis .
qed

lemma expressiveness_price_ImmConj_geq_parts’:
assumes ‹ i ∈ I›
shows

‹ (expressiveness_price (ImmConj I ψs) - E 0 0 0 0 1 0 0 0) - E 0 0 1 0 0 0 0 0
≥ expr_pr_conjunct (ψs i)›

using expressiveness_price_ImmConj_geq_parts[OF assms]
less_eq_energy_def minus_energy_def

by (smt (z3) energy.sel idiff_0_right)

Here, we show the prices for some specific formulas.
lemma example_ϕ_cp:

fixes op a b::‹ ’a› and left right::‹ ’s›
defines ‹ϕ ≡

(Internal
(Obs op

(Internal
(Conj {left, right}

(λi. (if i = left
then (Pos (Obs a TT))
else if i = right

then (Pos (Obs b TT))
else undefined))))))›

shows
‹ modal_depth_srbb ϕ = 2›
‹ branching_conjunction_depth ϕ = 0›
‹ unstable_conjunction_depth ϕ = 1›
‹ stable_conjunction_depth ϕ = 0›
‹ immediate_conjunction_depth ϕ = 0›
‹ max_positive_conjunct_depth ϕ = 1›
‹ max_negative_conjunct_depth ϕ = 0›
‹ negation_depth ϕ = 0›

unfolding ϕ_def by simp+
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lemma ‹ expressiveness_price (Internal
(Obs op

(Internal
(Conj {left, right}

(λi. (if i = left
then (Pos (Obs a TT))
else if i = right

then (Pos (Obs b TT))
else undefined)))))) = E 2 0 1 0 0 1 0 0›

by simp

lemma ‹ expressiveness_price TT = E 0 0 0 0 0 0 0 0›
by simp

lemma ‹ expressiveness_price (ImmConj {} ψs) = E 0 0 0 0 0 0 0 0›
by (simp add: Sup_enat_def)

lemma ‹ expressiveness_price (Internal (Conj {} ψs)) = E 0 0 0 0 0 0 0 0›
by (simp add: Sup_enat_def)

lemma ‹ expressiveness_price (Internal (BranchConj α TT {} ψs)) = E 1 1 1 0 0 1 0 0›
by (simp add: Sup_enat_def)

lemma expr_obs_phi:
‹ subtract_fn 1 0 0 0 0 0 0 0 (expr_pr_inner (Obs α ϕ)) = Some (expressiveness_price ϕ)›
by simp

end — pause lts_tau context

3.7 Characterizing Equivalence by Energy Coordinates

We can now define a sublanguage of Hennessy–Milner Logic O by the set of formulas with prices
below an energy coordinate.
definition O :: ‹ energy ⇒ ((’a, ’s) hml_srbb) set› where

‹O energy ≡ {ϕ . expressiveness_price ϕ ≤ energy}›

lemma O_sup: ‹ UNIV = O (E ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞)› unfolding O_def by auto

lemma price_hierarchy_entails_modal_hierarchy:
assumes ‹ e1 ≤ e2›
shows ‹O e1 ⊆ O e2›
using assms unfolding O_def by auto

definition O_inner :: ‹ energy ⇒ ((’a, ’s) hml_srbb_inner) set› where
‹O_inner energy ≡ {χ . expr_pr_inner χ ≤ energy}›

definition O_conjunct :: ‹ energy ⇒ ((’a, ’s) hml_srbb_conjunct) set› where
‹O_conjunct energy ≡ {χ . expr_pr_conjunct χ ≤ energy}›

context lts_tau
begin

A state p pre-orders another state q with respect to some energy e if and only if p HML pre-orders
q with respect to the HML sublanguage O e.
definition expr_preord :: ‹ ’s ⇒ energy ⇒ ’s ⇒ bool› (‹ _ � _ _› 60) where

‹ (p � e q) ≡ preordered (O e) p q›

Conversely, p and q are equivalent with respect to e if and only if they are equivalent with respect
to that HML sublanguage O e.
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definition expr_equiv :: ‹ ’s ⇒ energy ⇒ ’s ⇒ bool› (‹ _ ∼ _ _› 60) where
‹ (p ∼ e q) ≡ equivalent (O e) p q›

lemma price_hierachy_preorder_dual:
assumes

‹ e1 ≤ e2›
‹ p � e2 q›

shows
‹ p � e1 q›

using assms price_hierarchy_entails_modal_hierarchy expr_preord_def by auto

3.8 Relational Effects of Prices

Certain properties of prices influence the preorder/equivalence relations that are characterized by
price coordinates. (This will be important for some behavioral equivalences that we will prove to
be characterized by specific prices.)
lemma distinction_combination_eta:

fixes p q
defines

‹ Qα ≡ {q’. q →→ q’ ∧ (@ϕ. ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0) ∧ distinguishes ϕ p q’)}›
assumes

‹ p 7→a α p’›
‹ ∀ q’∈ Qα.
∀ q’’ q’’’. q’ 7→a α q’’ −→ q’’ →→ q’’’ −→ distinguishes (Φ q’’’) p’ q’’’›

shows
‹ ∀ q’∈ Qα. hml_srbb_inner.distinguishes (Obs α (Internal (Conj

{q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
(conjunctify_distinctions Φ p’)))) p q’›

proof -
have ‹ ∀ q’∈ Qα. ∀ q’’’∈{q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}.

hml_srbb_conj.distinguishes ((conjunctify_distinctions Φ p’) q’’’) p’ q’’’›
proof clarify

fix q’ q’’ q’’’
assume ‹ q’ ∈ Qα› ‹ q’ 7→a α q’’› ‹ q’’ →→ q’’’›
thus ‹ hml_srbb_conj.distinguishes (conjunctify_distinctions Φ p’ q’’’) p’ q’’’›

using assms(3) distinction_conjunctification by blast
qed
hence ‹ ∀ q’∈ Qα. ∀ q’’. q’ 7→a α q’’
−→ distinguishes (Internal (Conj {q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(conjunctify_distinctions Φ p’))) p’ q’’›
using silent_reachable.refl unfolding Qα_def by fastforce

thus ‹ ∀ q’∈ Qα.
hml_srbb_inner.distinguishes (Obs α (Internal (Conj

{q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
(conjunctify_distinctions Φ p’)))) p q’›

using assms(2) by (auto) (metis silent_reachable.refl)+
qed

lemma distinction_conjunctification_two_way_price:
assumes

‹ ∀ q∈I. distinguishes (Φ q) p q ∨ distinguishes (Φ q) q p›
‹ ∀ q∈I. Φ q ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›

shows
‹ ∀ q∈I.

(if distinguishes (Φ q) p q
then conjunctify_distinctions
else conjunctify_distinctions_dual

) Φ p q ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
proof

fix q
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assume ‹ q ∈ I›
show

‹ (if distinguishes (Φ q) p q
then conjunctify_distinctions
else conjunctify_distinctions_dual

) Φ p q ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
proof (cases ‹Φ q› )

case TT
then show ?thesis

using assms ‹ q ∈ I›
by fastforce

next
case (Internal χ)
then show ?thesis

using assms ‹ q ∈ I›
unfolding conjunctify_distinctions_def conjunctify_distinctions_dual_def O_def O_conjunct_def
by fastforce

next
case (ImmConj J Ψ)
hence ‹ J = {}›

using assms ‹ q ∈ I› unfolding O_def
by (simp, metis iadd_is_0 immediate_conjunction_depth.simps(3) zero_one_enat_neq(1))

then show ?thesis
using assms ‹ q ∈ I› ImmConj by fastforce

qed
qed

lemma distinction_combination_eta_two_way:
fixes p q p’ Φ
defines

‹ Qα ≡ {q’. q →→ q’ ∧ (@ϕ. ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)
∧ (distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p))}› and

‹Ψα ≡ λq’’’. (
if distinguishes (Φ q’’’) p’ q’’’
then conjunctify_distinctions
else conjunctify_distinctions_dual

) Φ p’ q’’’›
assumes

‹ p 7→a α p’›
‹ ∀ q’∈ Qα.
∀ q’’ q’’’. q’ 7→a α q’’ −→ q’’ →→ q’’’
−→ distinguishes (Φ q’’’) p’ q’’’ ∨ distinguishes (Φ q’’’) q’’’ p’›

shows
‹ ∀ q’∈ Qα. hml_srbb_inner.distinguishes (Obs α (Internal (Conj

{q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
Ψα))) p q’›

proof -
have ‹ ∀ q’∈ Qα. ∀ q’’’∈{q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}.

hml_srbb_conj.distinguishes (Ψα q’’’) p’ q’’’›
proof clarify

fix q’ q’’ q’’’
assume ‹ q’ ∈ Qα› ‹ q’ 7→a α q’’› ‹ q’’ →→ q’’’›
thus ‹ hml_srbb_conj.distinguishes (Ψα q’’’) p’ q’’’ ›

using assms(4) Ψα_def distinction_conjunctification_two_way mem_Collect_eq
by (smt (verit, best))

qed
hence ‹ ∀ q’∈ Qα. ∀ q’’’∈{q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}.

hml_srbb_inner.distinguishes (Conj {q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
Ψα) p’ q’’’›

using srbb_dist_conjunct_implies_dist_conjunction
unfolding lts_semantics.distinguishes_def
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by (metis (no_types, lifting))
hence ‹ ∀ q’∈ Qα. ∀ q’’’. (∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’) −→

hml_srbb_inner.distinguishes
(Conj {q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’} Ψα) p’ q’’’›

by blast
hence ‹ ∀ q’∈ Qα. ∀ q’’. q’ 7→a α q’’ −→ distinguishes

(Internal (Conj {q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’} Ψα)) p’ q’’›
by (meson distinguishes_def hml_srbb_inner.distinguishes_def

hml_srbb_models.simps(2) silent_reachable.refl)
thus ‹ ∀ q’∈ Qα. hml_srbb_inner.distinguishes

(Obs α (Internal (Conj {q’’’. ∃ q’∈ Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’} Ψα))) p q’›
using assms(3)
by auto (metis silent_reachable.refl)+

qed

lemma distinction_conjunctification_price:
assumes

‹ ∀ q∈I. distinguishes (Φ q) p q›
‹ ∀ q∈I. Φ q ∈ O pr›
‹ modal_depth pr ≤ pos_conjuncts pr›

shows
‹ ∀ q∈I. ((conjunctify_distinctions Φ p) q) ∈ O_conjunct pr›

proof
fix q
assume ‹ q ∈ I›
show ‹ conjunctify_distinctions Φ p q ∈ O_conjunct pr›
proof (cases ‹Φ q› )

case TT
then show ?thesis

using assms ‹ q ∈ I›
by fastforce

next
case (Internal χ)
then show ?thesis

using assms ‹ q ∈ I›
unfolding conjunctify_distinctions_def O_def O_conjunct_def
by fastforce

next
case (ImmConj J Ψ)
hence ‹ ∃ i. i∈J ∧ hml_srbb_conj.distinguishes (Ψ i) p q›

using ‹ q ∈ I› assms(1) by fastforce
moreover have ‹ conjunctify_distinctions Φ p q

= Ψ (SOME i. i∈J ∧ hml_srbb_conj.distinguishes (Ψ i) p q)›
unfolding ImmConj conjunctify_distinctions_def by simp

ultimately have Ψ_i:
‹ ∃ i∈J. hml_srbb_conj.distinguishes (Ψ i) p q ∧ conjunctify_distinctions Φ p q = Ψ i›
by (metis (no_types, lifting) some_eq_ex)

hence ‹ conjunctify_distinctions Φ p q ∈ Ψ‘J›
unfolding image_iff by blast

hence
‹ expr_pr_conjunct (conjunctify_distinctions Φ p q)
≤ expressiveness_price (ImmConj J Ψ)›

by (smt (verit, best) Ψ_i dual_order.trans expressiveness_price_ImmConj_geq_parts
gets_smaller)

then show ?thesis
using assms ‹ q ∈ I› ImmConj unfolding O_def O_conjunct_def by auto

qed
qed

lemma modal_stability_respecting:
‹ stability_respecting (preordered (O (E e1 e2 e3 ∞ e5 ∞ e7 e8)))›
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unfolding stability_respecting_def
proof safe

fix p q
assume p_stability:

‹ preordered (O (E e1 e2 e3 ∞ e5 ∞ e7 e8)) p q›
‹ stable_state p›

have ‹¬(∀ q’. q →→ q’
−→ ¬ preordered (O (E e1 e2 e3 ∞ e5 ∞ e7 e8)) p q’ ∨ ¬ stable_state q’)›

proof safe
assume ‹ ∀ q’. q →→ q’
−→ ¬ preordered (O (E e1 e2 e3 ∞ e5 ∞ e7 e8)) p q’ ∨ ¬ stable_state q’›

hence ‹ ∀ q’. q →→ q’ −→ stable_state q’
−→ (∃ϕ ∈ O (E e1 e2 e3 ∞ e5 ∞ e7 e8). distinguishes ϕ p q’)› by auto

then obtain Φ where Φ_def:
‹ ∀ q’∈(silent_reachable_set {q}). stable_state q’
−→ distinguishes (Φ q’) p q’ ∧ Φ q’ ∈ O (E e1 e2 e3 ∞ e5 ∞ e7 e8)›
using singleton_iff sreachable_set_is_sreachable by metis

hence distinctions:
‹ ∀ q’∈(silent_reachable_set {q} ∩ {q’. stable_state q’}). distinguishes (Φ q’) p q’›
‹ ∀ q’∈(silent_reachable_set {q} ∩ {q’. stable_state q’}).

Φ q’ ∈ O (E e1 e2 e3 ∞ e5 ∞ e7 e8)› by blast+
from distinction_conjunctification_price[OF this] have

‹ ∀ q’∈(silent_reachable_set {q} ∩ {q’. stable_state q’}).
conjunctify_distinctions Φ p q’ ∈ O_conjunct (E e1 e2 e3 ∞ e5 ∞ e7 e8)›

by fastforce
hence conj_price: ‹ StableConj (silent_reachable_set {q} ∩ {q’. stable_state q’})

(conjunctify_distinctions Φ p) ∈ O_inner (E e1 e2 e3 ∞ e5 ∞ e7 e8)›
unfolding O_inner_def O_conjunct_def using SUP_le_iff by fastforce

from Φ_def have
‹ ∀ q’∈(silent_reachable_set {q}). stable_state q’
−→ hml_srbb_conj.distinguishes (conjunctify_distinctions Φ p q’) p q’›

using singleton_iff distinction_conjunctification by metis
hence ‹ hml_srbb_inner.distinguishes_from

(StableConj (silent_reachable_set {q} ∩ {q’. stable_state q’})
(conjunctify_distinctions Φ p)) p (silent_reachable_set {q})›

using p_stability(2) by fastforce
hence

‹ distinguishes
(Internal (StableConj (silent_reachable_set {q} ∩ {q’. stable_state q’})

(conjunctify_distinctions Φ p))
)
p q›

unfolding silent_reachable_set_def
using silent_reachable.refl by auto

moreover have
‹ Internal (StableConj (silent_reachable_set {q} ∩ {q’. stable_state q’})

(conjunctify_distinctions Φ p)) ∈ O (E e1 e2 e3 ∞ e5 ∞ e7 e8)›
using conj_price unfolding O_def O_inner_def by simp

ultimately show False
using p_stability(1) preordered_no_distinction by blast

qed
thus ‹ ∃ q’. q →→ q’ ∧ preordered (O (E e1 e2 e3 ∞ e5 ∞ e7 e8)) p q’ ∧ stable_state q’›

by blast
qed

end

end
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4 Weak Traces
theory Weak_Traces

imports Main HML_SRBB Expressiveness_Price
begin

The point of this theory is to prove that the coordinate E ∞ 0 0 0 0 0 0 0 precisely characterizes
weak trace preorder and equivalence.

4.1 Weak Traces as Modal Constructs
inductive

is_trace_formula :: ‹ (’act, ’i) hml_srbb ⇒ bool› and
is_trace_formula_inner :: ‹ (’act, ’i) hml_srbb_inner ⇒ bool›

where
‹ is_trace_formula TT› |
‹ is_trace_formula (Internal χ)› if ‹ is_trace_formula_inner χ› |
‹ is_trace_formula (ImmConj I ψs)› if ‹ I = {}› |

‹ is_trace_formula_inner (Obs α ϕ)› if ‹ is_trace_formula ϕ› |
‹ is_trace_formula_inner (Conj I ψs)› if ‹ I = {}›

We define a function that translates a (weak) trace tr to a formula ϕ such that a state p models
ϕ, p |= ϕ if and only if tr is a (weak) trace of p.
fun

wtrace_to_srbb :: ‹ ’act list ⇒ (’act, ’i) hml_srbb› and
wtrace_to_inner :: ‹ ’act list ⇒ (’act, ’i) hml_srbb_inner› and
wtrace_to_conjunct :: ‹ ’act list ⇒ (’act, ’i) hml_srbb_conjunct›

where
‹ wtrace_to_srbb [] = TT› |
‹ wtrace_to_srbb tr = (Internal (wtrace_to_inner tr))› |

‹ wtrace_to_inner [] = (Conj {} (λ_. undefined))› | — Should never happen
‹ wtrace_to_inner (α # tr) = (Obs α (wtrace_to_srbb tr))› |

‹ wtrace_to_conjunct tr = Pos (wtrace_to_inner tr)› — Should never happen

lemma trace_to_srbb_is_trace_formula:
‹ is_trace_formula (wtrace_to_srbb trace)›
by (induct trace,

auto simp add: is_trace_formula.simps is_trace_formula_is_trace_formula_inner.intros(1,4))

4.2 Weak Trace Observations through Coordinates

The following three lemmas show that the modal-logical characterization of weak traces corresponds
to the sublanguage of HMLSRBB, obtain by the energy coordinates (∞, 0, 0, 0, 0, 0, 0, 0).
lemma trace_formula_to_expressiveness:

fixes
ϕ :: ‹ (’act, ’i) hml_srbb› and
χ :: ‹ (’act, ’i) hml_srbb_inner›

shows ‹ (is_trace_formula ϕ −→ (ϕ ∈ O (E ∞ 0 0 0 0 0 0 0)))
∧ (is_trace_formula_inner χ −→ (χ ∈ O_inner (E ∞ 0 0 0 0 0 0 0)))›

by (rule is_trace_formula_is_trace_formula_inner.induct)
(simp add: Sup_enat_def O_def O_inner_def)+

lemma expressiveness_to_trace_formula:
fixes
ϕ :: ‹ (’act, ’i) hml_srbb› and
χ :: ‹ (’act, ’i) hml_srbb_inner›
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shows ‹ (ϕ ∈ O (E ∞ 0 0 0 0 0 0 0) −→ is_trace_formula ϕ)
∧ (χ ∈ O_inner (E ∞ 0 0 0 0 0 0 0) −→ is_trace_formula_inner χ)
∧ True›

proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct)
case TT
then show ?case

using is_trace_formula_is_trace_formula_inner.intros(1) by blast
next

case (Internal x)
then show ?case

by (simp add: O_inner_def O_def is_trace_formula_is_trace_formula_inner.intros(2))
next

case (ImmConj x1 x2)
then show ?case

using O_def is_trace_formula_is_trace_formula_inner.intros(3)
by(auto simp add: O_def)

next
case (Obs x1 x2)
then show ?case by (simp add: O_def O_inner_def is_trace_formula_is_trace_formula_inner.intros(4))

next
case (Conj I ψs)
show ?case
proof (rule impI)

assume ‹ Conj I ψs ∈ O_inner (E ∞ 0 0 0 0 0 0 0)›
hence ‹ I = {}›

unfolding O_inner_def
by (metis bot.extremum_uniqueI bot_enat_def energy.sel(3) expr_pr_inner.simps

inst_conj_depth_inner.simps(2) le_iff_add leq_components
mem_Collect_eq not_one_le_zero)

then show ‹ is_trace_formula_inner (Conj I ψs)›
by (simp add: is_trace_formula_is_trace_formula_inner.intros(5))

qed
next

case (StableConj I ψs)
show ?case
proof (rule impI)

assume ‹ StableConj I ψs ∈ O_inner (E ∞ 0 0 0 0 0 0 0)›
have ‹ StableConj I ψs /∈ O_inner (E ∞ 0 0 0 0 0 0 0)›

by (simp add: O_inner_def)
with ‹ StableConj I ψs ∈ O_inner (E ∞ 0 0 0 0 0 0 0)›
show ‹ is_trace_formula_inner (StableConj I ψs)› by contradiction

qed
next

case (BranchConj α ϕ I ψs)
have ‹ expr_pr_inner (BranchConj α ϕ I ψs) ≥ E 0 1 1 0 0 0 0 0›

by simp
hence ‹ BranchConj α ϕ I ψs /∈ O_inner (E ∞ 0 0 0 0 0 0 0)›

unfolding O_inner_def by simp
thus ?case by blast

next
case (Pos x)
then show ?case by auto

next
case (Neg x)
then show ?case by auto

qed

lemma modal_depth_only_is_trace_form:
‹ (is_trace_formula ϕ) = (ϕ ∈ O (E ∞ 0 0 0 0 0 0 0))›
using expressiveness_to_trace_formula trace_formula_to_expressiveness by blast
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context lts_tau
begin

If a trace formula ϕ is satisfied by a state p then there exists a weak trace tr of p such that
wtrace_to_srbb tr is equivalent to ϕ.
lemma trace_formula_implies_trace:

fixes
ψ ::‹ (’a, ’s) hml_srbb_conjunct›

shows
‹ is_trace_formula ϕ =⇒ p |=SRBB ϕ

=⇒ ∃ tr ∈ weak_traces p. wtrace_to_srbb tr WsrbbV ϕ›
‹ is_trace_formula_inner χ =⇒ hml_srbb_inner_models q χ

=⇒ ∃ tr ∈ weak_traces q. wtrace_to_inner tr WχV χ›
True

proof (induction ϕ and χ and ψ arbitrary: p and q)
case TT
thus ?case

using weak_step_sequence.intros(1) silent_reachable.intros(1) by fastforce
next

case (Internal χ)
hence ‹ is_trace_formula_inner χ›

using is_trace_formula.cases by blast
from ‹ p |=SRBB Internal χ›

have ‹ ∃ p’. p →→ p’ ∧ hml_srbb_inner_models p’ χ›
unfolding hml_srbb_models.simps .

then obtain p’ where ‹ p →→ p’› ‹ hml_srbb_inner_models p’ χ› by auto
hence ‹ hml_srbb_inner_models p’ χ› by auto
with ‹ is_trace_formula_inner χ›

have ‹ ∃ tr∈weak_traces p’. wtrace_to_inner tr WχV χ›
using Internal by blast

then obtain tr where tr_spec:
‹ tr ∈ weak_traces p’› ‹ wtrace_to_inner tr WχV χ› by auto

with ‹ p →→ p’› have ‹ tr ∈ weak_traces p›
using silent_prepend_weak_traces by auto

moreover have ‹ wtrace_to_srbb tr WsrbbV Internal χ›
proof (cases tr)

case Nil
thus ?thesis

using srbb_TT_is_χTT tr_spec by auto
next

case (Cons a tr)
thus ?thesis

using tr_spec internal_srbb_cong
by (metis wtrace_to_srbb.simps(2))

qed
ultimately show ?case by blast

next
case (ImmConj I ψs)
from ‹ is_trace_formula (ImmConj I ψs)›
have ‹ I = {}›

by (simp add: is_trace_formula.simps)
have ‹ [] ∈ weak_traces p›

using silent_reachable.intros(1) weak_step_sequence.intros(1) by auto
have ‹ wtrace_to_srbb [] WsrbbV ImmConj I ψs›

using srbb_TT_is_empty_conj ‹ I = {}›
unfolding wtrace_to_srbb.simps by auto

thus ‹ ∃ tr∈weak_traces p. wtrace_to_srbb tr WsrbbV ImmConj I ψs›
using ‹ [] ∈ weak_traces p› by auto

next
case (Obs α ϕ)
thus ?case
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proof (cases ‹α = τ› )
case True
with ‹ hml_srbb_inner_models q (Obs α ϕ)› have ‹ q |=SRBB ϕ›

using Obs.prems(1) silent_reachable.step empty_conj_trivial(1)
by (metis (no_types, lifting) hml_srbb_inner.distinct(1) hml_srbb_inner.inject(1)

hml_srbb_inner_models.simps(1) hml_srbb_models.simps(1,2) is_trace_formula.cases
is_trace_formula_inner.cases)

moreover have ‹ is_trace_formula ϕ›
using ‹ is_trace_formula_inner (Obs α ϕ)› is_trace_formula_inner.cases by auto

ultimately show ‹ ∃ tr ∈ weak_traces q. wtrace_to_inner tr WχV Obs α ϕ›
using Obs.IH
by (metis ‹α = τ› obs_srbb_cong prepend_τ_weak_trace wtrace_to_inner.simps(2))

next
case False
from ‹ is_trace_formula_inner (Obs α ϕ)›
have ‹ is_trace_formula ϕ›

by (simp add: is_trace_formula_inner.simps)
from ‹ hml_srbb_inner_models q (Obs α ϕ)› and ‹α 6= τ›
have ‹ ∃ q’. q 7→ α q’ ∧ q’ |=SRBB ϕ› by simp
then obtain q’ where ‹ q 7→ α q’› ‹ q’ |=SRBB ϕ› by auto
hence ‹ ∃ tr’ ∈ weak_traces q’. wtrace_to_srbb tr’ WsrbbV ϕ›

using ‹ is_trace_formula ϕ› Obs by auto
then obtain tr’ where ‹ tr’ ∈ weak_traces q’› ‹ wtrace_to_srbb tr’ WsrbbV ϕ› by auto
have ‹ (α # tr’) ∈ weak_traces q›

using ‹ q 7→ α q’› ‹ tr’ ∈ weak_traces q’› step_prepend_weak_traces by auto
from ‹ wtrace_to_srbb tr’ WsrbbV ϕ›
have ‹ Obs α (wtrace_to_srbb tr’) WχV Obs α ϕ›

using obs_srbb_cong by auto
then have ‹ wtrace_to_inner (α # tr’) WχV Obs α ϕ›

unfolding wtrace_to_inner.simps.
with ‹ (α # tr’) ∈ weak_traces q›

show ‹ ∃ tr ∈ weak_traces q. wtrace_to_inner tr WχV Obs α ϕ› by blast
qed

next
case (Conj I ψs)
from ‹ is_trace_formula_inner (Conj I ψs)› have ‹ I = {}›

by (simp add: is_trace_formula_inner.simps)
have ‹ (Conj {} (λ_. undefined)) WχV (Conj {} ψs)›

using srbb_obs_τ_is_χTT by simp
then have ‹ (Conj {} (λ_. undefined)) WχV (Conj I ψs)›

using ‹ I = {}› by auto
then have ‹ wtrace_to_inner [] WχV Conj I ψs›

unfolding wtrace_to_inner.simps.
with empty_trace_allways_weak_trace[of q] show ?case by auto

qed (auto simp add: is_trace_formula_inner.simps)

lemma trace_equals_trace_to_formula:
‹ t ∈ weak_traces p ←→ p |=SRBB (wtrace_to_srbb t)›

proof
assume ‹ t ∈ weak_traces p›
show ‹ p |=SRBB (wtrace_to_srbb t)›

using ‹ t ∈ weak_traces p›
proof (induction t arbitrary: p)

case Nil
then show ?case

by simp
next

case (Cons a tail)
then obtain p’’ p’ where ‹ p →→7→→→ a p’’› ‹ p’’ →→7→→→$ tail p’›

using weak_step_sequence.simps
by (smt (verit, best) list.discI list.inject mem_Collect_eq)
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with Cons(1) have IS: ‹ p’’ |=SRBB wtrace_to_srbb tail›
by blast

from Cons have ‹ wtrace_to_srbb (a # tail) = (Internal (Obs a (wtrace_to_srbb tail)))›
by simp

thus ?case
by (smt (verit) Cons.IH IS lts_tau.hml_srbb_inner_models.simps(1)

lts_tau.silent_reachable_trans ‹ p →→7→→→ a p’’› empty_trace_allways_weak_trace
hml_srbb_models.simps(2) weak_step_def wtrace_to_srbb.elims)

qed
next

assume ‹ p |=SRBB wtrace_to_srbb t›
then show ‹ t ∈ weak_traces p›
proof(induction t arbitrary: p)

case Nil
then show ?case

using weak_step_sequence.intros(1) silent_reachable.intros(1) by auto
next

case (Cons a tail)
hence ‹ p |=SRBB (Internal (Obs a (wtrace_to_srbb tail)))›

by simp
thus ?case

using Cons prepend_τ_weak_trace silent_prepend_weak_traces step_prepend_weak_traces
by fastforce

qed
qed

lemma expr_preorder_characterizes_relational_preorder_traces:
‹ (p .WT q) = (p � (E ∞ 0 0 0 0 0 0 0) q)›
unfolding expr_preord_def preordered_def

proof
assume ‹ p .WT q›
thus ‹ ∀ϕ∈O (E ∞ 0 0 0 0 0 0 0). p |=SRBB ϕ −→ q |=SRBB ϕ›

using expressiveness_to_trace_formula trace_equals_trace_to_formula
trace_formula_implies_trace

unfolding weakly_trace_preordered_def
by (metis (no_types, lifting) eq_equality in_mono)

next
assume ϕ_eneg: ‹ ∀ϕ∈O (E ∞ 0 0 0 0 0 0 0). p |=SRBB ϕ −→ q |=SRBB ϕ›
thus ‹ p .WT q›

unfolding weakly_trace_preordered_def
using trace_equals_trace_to_formula trace_formula_to_expressiveness

trace_to_srbb_is_trace_formula
by fastforce

qed

Two states p and q are weakly trace equivalent if and only if they they are equivalent with respect
to the coordinate (∞, 0, 0, 0, 0, 0, 0, 0).
theorem weak_traces_coordinate: ‹ (p 'WT q) = (p ∼ (E ∞ 0 0 0 0 0 0 0) q)›

using expr_preorder_characterizes_relational_preorder_traces
unfolding weakly_trace_equivalent_def expr_equiv_def O_def expr_preord_def
by simp

end

end
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5 η-Bisimilarity and η-Similarity
theory Eta_Bisimilarity

imports Expressiveness_Price
begin

η-Bisimilarity and η-Similarity are comparably arcane notions of behavioral equivalence. We show
that they are characterized by coordinates E ∞ ∞ ∞ 0 0 ∞ ∞ ∞ and E ∞ ∞ ∞ 0 0 ∞ 0 0 as
an illustration of how to connect coordinates and relational characterizations of equivalences.

5.1 Definition and Properties of η-(Bi-)Similarity
context lts_tau
begin

We characterize η-bisimilarity through symmetric η-simulations.
definition eta_simulation :: ‹ (’s ⇒ ’s ⇒ bool) ⇒ bool› where

‹ eta_simulation R ≡ ∀ p α p’ q. R p q −→ p 7→ α p’ −→
(α = τ ∧ R p’ q)
∨ (∃ q’ q’’ q’’’. q →→ q’ ∧ q’ 7→ α q’’ ∧ q’’ →→ q’’’ ∧ R p q’ ∧ R p’ q’’’)›

definition eta_bisimulated :: ‹ ’s ⇒ ’s ⇒ bool› (infix ‹ ~η› 40) where
‹ p ~η q ≡ ∃ R. eta_simulation R ∧ symp R ∧ R p q›

lemma eta_bisim_sim:
shows ‹ eta_simulation (~η)›
unfolding eta_bisimulated_def eta_simulation_def by blast

lemma eta_bisim_sym:
assumes ‹ p ~η q›
shows ‹ q ~η p›
using assms unfolding eta_bisimulated_def
by (meson sympD)

lemma silence_retains_eta_sim:
assumes

‹ eta_simulation R›
‹ R p q›
‹ p →→ p’›

shows ‹ ∃ q’. R p’ q’ ∧ q →→ q’›
using assms(3,2)

proof (induct arbitrary: q)
case (refl p)
then show ?case

using silent_reachable.refl by blast
next

case (step p p’ p’’)
then obtain q’ where ‹ R p’ q’› ‹ q →→ q’›

using ‹ eta_simulation R› silent_reachable.refl
silent_reachable_append_τ silent_reachable_trans

unfolding eta_simulation_def by blast
then obtain q’’ where ‹ R p’’ q’’› ‹ q’ →→ q’’› using step by blast
then show ?case

using ‹ q →→ q’› silent_reachable_trans by blast
qed

lemma eta_bisimulated_silently_retained:
assumes

‹ p ~η q›
‹ p →→ p’›
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shows
‹ ∃ q’. q →→ q’ ∧ p’ ~η q’› using assms(2,1)

using silence_retains_eta_sim unfolding eta_bisimulated_def by blast

5.2 Logical Characterization of η-Bisimilarity through Expressiveness
Price

lemma logic_eta_bisim_invariant:
assumes

‹ p0 ~η q0›
‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
‹ p0 |=SRBB ϕ›

shows ‹ q0 |=SRBB ϕ›
proof -

have ‹
∧
ϕ χ ψ.

(∀ p q. p ~η q −→ ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞) −→ p |=SRBB ϕ −→ q |=SRBB ϕ) ∧
(∀ p q. p ~η q −→ χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)
−→ hml_srbb_inner_models p χ −→ (∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ)) ∧

(∀ p q. p ~η q −→ ψ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)
−→ hml_srbb_conjunct_models p ψ −→ hml_srbb_conjunct_models q ψ)›

proof -
fix ϕ χ ψ
show

‹ (∀ p q. p ~η q −→ ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞) −→ p |=SRBB ϕ −→ q |=SRBB ϕ) ∧
(∀ p q. p ~η q −→ χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)
−→ hml_srbb_inner_models p χ −→ (∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ)) ∧

(∀ p q. p ~η q −→ ψ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)
−→ hml_srbb_conjunct_models p ψ −→ hml_srbb_conjunct_models q ψ)›

proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct)
case TT
then show ?case by simp

next
case (Internal χ)
show ?case
proof safe

fix p q
assume case_assms:

‹ p ~η q› ‹ p |=SRBB hml_srbb.Internal χ› ‹ Internal χ ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
then obtain p’ where p’_spec: ‹ p →→ p’› ‹ hml_srbb_inner_models p’ χ› by auto
have ‹χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›

using case_assms(3) unfolding O_inner_def O_def by auto
hence ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ›

using Internal case_assms(1) p’_spec eta_bisimulated_silently_retained
by (meson silent_reachable_trans)

thus ‹ q |=SRBB hml_srbb.Internal χ› by auto
qed

next
case (ImmConj I Ψ)
then show ?case unfolding O_inner_def O_def by auto

next
case (Obs α ϕ)
then show ?case
proof (safe)

fix p q
assume case_assms:

‹ p ~η q›
‹ Obs α ϕ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
‹ hml_srbb_inner_models p (hml_srbb_inner.Obs α ϕ)›

hence ‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)› unfolding O_inner_def O_def by auto
hence no_imm_conj: ‹ @ I Ψ. ϕ = ImmConj I Ψ ∧ I 6= {}› unfolding O_def by force
have back_step: ‹ ∀ p0 p1. p1 |=SRBB ϕ −→ p0 →→ p1 −→ p0 |=SRBB ϕ›
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proof (cases ϕ)
case TT
then show ?thesis by auto

next
case (Internal _)
then show ?thesis

using silent_reachable_trans by auto
next

case (ImmConj _ _)
then show ?thesis using no_imm_conj by auto

qed
from case_assms obtain p’ where ‹ p 7→a α p’› ‹ p’ |=SRBB ϕ› by auto
then obtain q’ q’’ q’’’ where ‹ q →→ q’› ‹ q’ 7→a α q’’› ‹ q’’ →→ q’’’› ‹ p’ ~η q’’’›

using ‹ p ~η q› eta_bisim_sim unfolding eta_simulation_def
using silent_reachable.refl by blast

hence ‹ q’’’ |=SRBB ϕ›
using ‹ p’ |=SRBB ϕ› Obs ‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)› by blast

hence ‹ hml_srbb_inner_models q’ (hml_srbb_inner.Obs α ϕ)›
using ‹ q’ 7→a α q’’› ‹ q’’ →→ q’’’› back_step by auto

thus ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (hml_srbb_inner.Obs α ϕ)›
using ‹ q →→ q’› by blast

qed
next

case (Conj I Ψ)
show ?case
proof safe

fix p q
assume case_assms:

‹ p ~η q›
‹ Conj I Ψ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
‹ hml_srbb_inner_models p (Conj I Ψ)›

hence conj_price: ‹ ∀ i∈I. Ψ i ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
unfolding O_conjunct_def O_inner_def
by (simp, metis SUP_bot_conv(1) le_zero_eq sup_bot_left sup_ge1)

from case_assms have ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)› by auto
hence ‹ ∀ i∈I. hml_srbb_conjunct_models q (Ψ i)›

using Conj ‹ p ~η q› conj_price by blast
hence ‹ hml_srbb_inner_models q (hml_srbb_inner.Conj I Ψ)› by simp
thus ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (hml_srbb_inner.Conj I Ψ)›

using silent_reachable.refl by blast
qed

next
case (StableConj I Ψ)
thus ?case unfolding O_inner_def O_def by auto

next
case (BranchConj α ϕ I Ψ)
show ?case
proof safe

fix p q
assume case_assms:

‹ p ~η q›
‹ BranchConj α ϕ I Ψ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
‹ hml_srbb_inner_models p (BranchConj α ϕ I Ψ)›

hence ‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)› unfolding O_inner_def O_def
by (simp, metis le_zero_eq sup_ge1)

hence no_imm_conj: ‹ @ I Ψ. ϕ = ImmConj I Ψ ∧ I 6= {}› unfolding O_def by force
have back_step: ‹ ∀ p0 p1. p1 |=SRBB ϕ −→ p0 →→ p1 −→ p0 |=SRBB ϕ›
proof (cases ϕ)

case TT
then show ?thesis by auto

next
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case (Internal _)
then show ?thesis

using silent_reachable_trans by auto
next

case (ImmConj _ _)
then show ?thesis using no_imm_conj by auto

qed
from case_assms have conj_price: ‹ ∀ i∈I. Ψ i ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›

unfolding O_conjunct_def O_inner_def
by (simp, metis SUP_bot_conv(1) le_zero_eq sup_bot_left sup_ge1)

from case_assms have ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)›
‹ hml_srbb_inner_models p (Obs α ϕ)›

using branching_conj_parts branching_conj_obs by blast+
then obtain p’ where ‹ p 7→a α p’› ‹ p’ |=SRBB ϕ› by auto
then obtain q’ q’’ q’’’ where q’_q’’_spec:

‹ q →→ q’› ‹ q’ 7→a α q’’› ‹ q’’ →→ q’’’›
‹ p ~η q’› ‹ p’ ~η q’’’›
using eta_bisim_sim ‹ p ~η q› silent_reachable.refl
unfolding eta_simulation_def by blast

hence ‹ q’’’ |=SRBB ϕ›
using BranchConj.hyps ‹ p’ |=SRBB ϕ› ‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)› by auto

hence ‹ q’’ |=SRBB ϕ› using back_step q’_q’’_spec by blast
hence ‹ hml_srbb_inner_models q’ (Obs α ϕ)› using q’_q’’_spec by auto
moreover have ‹ ∀ i∈I. hml_srbb_conjunct_models q’ (Ψ i)›

using BranchConj.hyps ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)› q’_q’’_spec conj_price
by blast

ultimately show ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (BranchConj α ϕ I Ψ)›
using ‹ q →→ q’› by auto

qed
next

case (Pos χ)
show ?case
proof safe

fix p q
assume case_assms:

‹ p ~η q›
‹ Pos χ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
‹ hml_srbb_conjunct_models p (Pos χ)›

hence ‹χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
unfolding O_inner_def O_conjunct_def by simp

from case_assms obtain p’ where ‹ p →→ p’› ‹ hml_srbb_inner_models p’ χ› by auto
then obtain q’ where ‹ q →→ q’› ‹ hml_srbb_inner_models q’ χ›

using Pos ‹ p ~η q› ‹χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
by (meson eta_bisimulated_silently_retained silent_reachable_trans)

thus ‹ hml_srbb_conjunct_models q (Pos χ)› by auto
qed

next
case (Neg χ)
show ?case
proof safe

fix p q
assume case_assms:

‹ p ~η q›
‹ Neg χ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
‹ hml_srbb_conjunct_models p (Neg χ)›

hence ‹χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
unfolding O_inner_def O_conjunct_def by simp

from case_assms have ‹ ∀ p’. p →→ p’ −→ ¬hml_srbb_inner_models p’ χ› by simp
moreover have

‹ (∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ)
−→ (∃ p’. p →→ p’ ∧ hml_srbb_inner_models p’ χ)›
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using Neg eta_bisim_sym[OF ‹ p ~η q› ] eta_bisimulated_silently_retained
silent_reachable_trans ‹χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)› by blast

ultimately have ‹ ∀ q’. q →→ q’ −→ ¬hml_srbb_inner_models q’ χ› by blast
thus ‹ hml_srbb_conjunct_models q (Neg χ)› by simp

qed
qed

qed
thus ?thesis using assms by blast

qed

lemma modal_eta_sim_eq: ‹ eta_simulation (equivalent (O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)))›
proof -

have ‹ @ p α p’ q. (equivalent (O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞))) p q ∧ p 7→ α p’ ∧
(α 6= τ ∨ ¬(equivalent (O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞))) p’ q) ∧
(∀ q’ q’’ q’’’. q →→ q’ −→ q’ 7→ α q’’ −→ q’’ →→ q’’’

−→ ¬ equivalent (O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)) p q’
∨ ¬ equivalent (O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)) p’ q’’’)›

proof clarify
fix p α p’ q
define Qα where

‹ Qα ≡ {q’. q →→ q’ ∧ (@ϕ. ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)
∧ (distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p))}›

assume contradiction:
‹ equivalent (O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)) p q› ‹ p 7→ α p’›
‹ ∀ q’ q’’ q’’’. q →→ q’ −→ q’ 7→ α q’’ −→ q’’ →→ q’’’
−→ ¬ equivalent (O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)) p q’
∨ ¬ equivalent (O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)) p’ q’’’›

‹α 6= τ ∨ ¬ equivalent (O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)) p’ q›
hence distinctions: ‹ ∀ q’. q →→ q’ −→

(∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞). distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p) ∨
(∀ q’’ q’’’. q’ 7→a α q’’ −→ q’’ →→ q’’’
−→ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).

distinguishes ϕ p’ q’’’ ∨ distinguishes ϕ q’’’ p’))›
unfolding equivalent_no_distinction
by (metis silent_reachable.cases silent_reachable.refl)

hence ‹ ∀ q’’ q’’’ . ∀ q’∈Qα. q’ 7→a α q’’ −→ q’’ →→ q’’’
−→ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).

distinguishes ϕ p’ q’’’ ∨ distinguishes ϕ q’’’ p’)›
unfolding Qα_def using silent_reachable.refl by fastforce

hence ‹ ∀ q’’ q’’’. q’’ →→ q’’’ −→ (∃ q’. q →→ q’ ∧ (@ϕ. ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)
∧ (distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)) ∧ q’ 7→a α q’’)

−→ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).
distinguishes ϕ p’ q’’’ ∨ distinguishes ϕ q’’’ p’)›

unfolding Qα_def by blast
hence ‹ ∀ q’’’. (∃ q’ q’’. q →→ q’ ∧ (@ϕ. ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)

∧ (distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)) ∧ q’ 7→a α q’’ ∧ q’’ →→ q’’’)
−→ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).

distinguishes ϕ p’ q’’’ ∨ distinguishes ϕ q’’’ p’)›
by blast

then obtain Φα where Φα_def:
‹ ∀ q’’’. (∃ q’ q’’. q →→ q’ ∧ (@ϕ. ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)

∧ (distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)) ∧ q’ 7→a α q’’ ∧ q’’ →→ q’’’)
−→ (Φα q’’’) ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)
∧ (distinguishes (Φα q’’’) p’ q’’’ ∨ distinguishes (Φα q’’’) q’’’ p’)› by metis

hence distinctions_α: ‹ ∀ q’∈Qα. ∀ q’’ q’’’.
q’ 7→a α q’’ −→ q’’ →→ q’’’
−→ distinguishes (Φα q’’’) p’ q’’’ ∨ distinguishes (Φα q’’’) q’’’ p’›

unfolding Qα_def by blast
from distinctions obtain Φη where

‹ ∀ q’. q’∈{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).
distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)}
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−→ (distinguishes (Φη q’) p q’ ∨ distinguishes (Φη q’) q’ p)
∧ (Φη q’) ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›

unfolding mem_Collect_eq by moura
hence

‹ ∀ q’∈{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).
distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)}.

(distinguishes (Φη q’) p q’ ∨ distinguishes (Φη q’) q’ p)›
‹ ∀ q’∈{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).

distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)}.
(Φη q’) ∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›

by blast+
from distinction_conjunctification_two_way[OF this(1)]

distinction_conjunctification_two_way_price[OF this]
have ‹ ∀ q’∈{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).

distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)}.
hml_srbb_conj.distinguishes (
(if distinguishes (Φη q’) p q’
then conjunctify_distinctions
else conjunctify_distinctions_dual) Φη p q’) p q’

∧ (if distinguishes (Φη q’) p q’
then conjunctify_distinctions
else conjunctify_distinctions_dual) Φη p q’ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›

by fastforce
then obtain Ψη where distinctions_η:

‹ ∀ q’∈{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).
distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)}.

hml_srbb_conj.distinguishes (Ψη q’) p q’
∧ Ψη q’ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›

by auto
have ‹ p 7→a α p’› using ‹ p 7→ α p’› by simp
from distinction_combination_eta_two_way[OF this, of q Φα] distinctions_α have obs_dist:

‹ ∀ q’∈Qα.
hml_srbb_inner.distinguishes (

Obs α (Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
(λq’’’. (if distinguishes (Φα q’’’) p’ q’’’

then conjunctify_distinctions else conjunctify_distinctions_dual) Φα p’
q’’’)))

) p q’›
unfolding Qα_def by fastforce

have ‹ Qα 6= {}›
using Qα_def contradiction(1) silent_reachable.refl by fastforce

hence conjunct_prices: ‹ ∀ q’’’∈{q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}.
((if distinguishes (Φα q’’’) p’ q’’’
then conjunctify_distinctions
else conjunctify_distinctions_dual) Φα p’ q’’’
) ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›

using distinction_conjunctification_two_way_price[of
‹ {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}› ]

using Qα_def Φα_def by auto
have ‹ (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(λq’’’. (if distinguishes (Φα q’’’) p’ q’’’
then conjunctify_distinctions else conjunctify_distinctions_dual)

Φα p’ q’’’)) ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
proof (cases ‹ {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’} = {}› )

case True
then show ?thesis

unfolding O_inner_def O_conjunct_def
by (auto simp add: True bot_enat_def)

next
case False
then show ?thesis
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using conjunct_prices
unfolding O_inner_def O_conjunct_def by force

qed
hence obs_price: ‹ (Obs α (Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(λq’’’. (if distinguishes (Φα q’’’) p’ q’’’
then conjunctify_distinctions else conjunctify_distinctions_dual
) Φα p’ q’’’)))) ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›

using distinction_conjunctification_price distinctions_α
unfolding O_inner_def O_def by simp

from obs_dist distinctions_η have
‹ hml_srbb_inner_models p (BranchConj α

(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
(λq’’’. (if distinguishes (Φα q’’’) p’ q’’’

then conjunctify_distinctions else conjunctify_distinctions_dual
) Φα p’ q’’’)))

{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).
distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)} Ψη)›

using ‹ Qα 6= {}› silent_reachable.refl
unfolding hml_srbb_conj.distinguishes_def hml_srbb_inner.distinguishes_def
by (smt (verit) Qα_def empty_Collect_eq hml_srbb_inner_models.simps(1,4) mem_Collect_eq)

moreover have ‹ ∀ q’. q →→ q’ −→ ¬ hml_srbb_inner_models q’
(BranchConj α

(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
(λq’’’. (if distinguishes (Φα q’’’) p’ q’’’

then conjunctify_distinctions
else conjunctify_distinctions_dual) Φα p’

q’’’)))
{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).

distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)} Ψη)›
proof safe

fix q’
assume contradiction: ‹ q →→ q’›

‹ hml_srbb_inner_models q’ (BranchConj α
(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(λq’’’. (if distinguishes (Φα q’’’) p’ q’’’
then conjunctify_distinctions
else conjunctify_distinctions_dual) Φα p’

q’’’)))
{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).

distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)} Ψη)›
thus ‹ False›

using obs_dist distinctions_η branching_conj_obs branching_conj_parts
unfolding distinguishes_def hml_srbb_conj.distinguishes_def

hml_srbb_inner.distinguishes_def Qα_def
by blast

qed
moreover have branch_price:

‹ (BranchConj α
(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(λq’’’. (if distinguishes (Φα q’’’) p’ q’’’
then conjunctify_distinctions
else conjunctify_distinctions_dual) Φα p’

q’’’)))
{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).
distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)} Ψη)

∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
using distinctions_η obs_price
unfolding Qα_def O_inner_def O_def O_conjunct_def Φα_def
by (simp, metis (mono_tags, lifting) SUP_bot_conv(2) bot_enat_def sup_bot_left)

ultimately have ‹ distinguishes (Internal (BranchConj α
(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
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(λq’’’. (if distinguishes (Φα q’’’) p’ q’’’
then conjunctify_distinctions else conjunctify_distinctions_dual) Φα p’

q’’’)))
{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).

distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)} Ψη)) p q›
unfolding distinguishes_def Qα_def
using silent_reachable.refl hml_srbb_models.simps(2) by blast

moreover have ‹ (Internal (BranchConj α
(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(λq’’’. (if distinguishes (Φα q’’’) p’ q’’’
then conjunctify_distinctions else conjunctify_distinctions_dual) Φα p’

q’’’)))
{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞).

distinguishes ϕ p q’ ∨ distinguishes ϕ q’ p)} Ψη))
∈ O (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞)›
using branch_price
unfolding Qα_def O_def O_conjunct_def
by (metis (no_types, lifting) O_inner_def expr_internal_eq mem_Collect_eq)

ultimately show False using contradiction(1) equivalent_no_distinction by blast
qed
thus ?thesis

unfolding eta_simulation_def by blast
qed

theorem eta_bisim_coordinate: ‹ (p ~η q) = (p ∼ (E ∞ ∞ ∞ 0 0 ∞ ∞ ∞) q)›
using modal_eta_sim_eq logic_eta_bisim_invariant sympD equivalent_no_distinction
unfolding eta_bisimulated_def expr_equiv_def distinguishes_def
by (smt (verit, best) equivalent_equiv equivpE)

5.3 η-Similarity
lemma logic_eta_sim_invariant:

assumes
‹ ∃ R. eta_simulation R ∧ R p0 q0›
‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
‹ p0 |=SRBB ϕ›

shows ‹ q0 |=SRBB ϕ›
proof -

have ‹
∧
ϕ χ ψ.

(∀ p q. (∃ R. eta_simulation R ∧ R p q) −→ ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)
−→ p |=SRBB ϕ −→ q |=SRBB ϕ) ∧

(∀ p q. (∃ R. eta_simulation R ∧ R p q) −→ χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)
−→ hml_srbb_inner_models p χ −→ (∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ)) ∧

(∀ p q. (∃ R. eta_simulation R ∧ R p q) −→ ψ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ 0 0)
−→ hml_srbb_conjunct_models p ψ −→ hml_srbb_conjunct_models q ψ)›

proof -
fix ϕ χ ψ
show

‹ (∀ p q. (∃ R. eta_simulation R ∧ R p q) −→ ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)
−→ p |=SRBB ϕ −→ q |=SRBB ϕ) ∧

(∀ p q. (∃ R. eta_simulation R ∧ R p q) −→ χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)
−→ hml_srbb_inner_models p χ −→ (∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ)) ∧

(∀ p q. (∃ R. eta_simulation R ∧ R p q) −→ ψ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ 0 0)
−→ hml_srbb_conjunct_models p ψ −→ hml_srbb_conjunct_models q ψ)›

proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct)
case TT
then show ?case by simp

next
case (Internal χ)
show ?case
proof safe
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fix p q R
assume case_assms:

‹ eta_simulation R› ‹ R p q› ‹ p |=SRBB hml_srbb.Internal χ›
‹ Internal χ ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)›

then obtain p’ where p’_spec: ‹ p →→ p’› ‹ hml_srbb_inner_models p’ χ› by auto
have ‹χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)›

using case_assms(4) unfolding O_inner_def O_def by auto
hence ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ›

using Internal case_assms(1,2) p’_spec silence_retains_eta_sim
by (metis silent_reachable_trans)

thus ‹ q |=SRBB hml_srbb.Internal χ› by auto
qed

next
case (ImmConj I Ψ)
then show ?case unfolding O_inner_def O_def by auto

next
case (Obs α ϕ)
then show ?case
proof (safe)

fix p q R
assume case_assms:

‹ eta_simulation R› ‹ R p q›
‹ Obs α ϕ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
‹ hml_srbb_inner_models p (hml_srbb_inner.Obs α ϕ)›

hence ‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)› unfolding O_inner_def O_def by auto
hence no_imm_conj: ‹ @ I Ψ. ϕ = ImmConj I Ψ ∧ I 6= {}› unfolding O_def by force
have back_step: ‹ ∀ p0 p1. p1 |=SRBB ϕ −→ p0 →→ p1 −→ p0 |=SRBB ϕ›
proof (cases ϕ)

case TT
then show ?thesis by auto

next
case (Internal _)
then show ?thesis

using silent_reachable_trans by auto
next

case (ImmConj _ _)
then show ?thesis using no_imm_conj by auto

qed
from case_assms obtain p’ where ‹ p 7→a α p’› ‹ p’ |=SRBB ϕ› by auto
then obtain q’ q’’ q’’’ where ‹ q →→ q’› ‹ q’ 7→a α q’’› ‹ q’’ →→ q’’’› ‹ R p’ q’’’›

using ‹ eta_simulation R› ‹ R p q› unfolding eta_simulation_def
using silent_reachable.refl by blast

hence ‹ q’’’ |=SRBB ϕ› using ‹ p’ |=SRBB ϕ› Obs ‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
using case_assms(1) by blast

hence ‹ hml_srbb_inner_models q’ (hml_srbb_inner.Obs α ϕ)›
using ‹ q’ 7→a α q’’› ‹ q’’ →→ q’’’› back_step by auto

thus ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (hml_srbb_inner.Obs α ϕ)›
using ‹ q →→ q’› by blast

qed
next

case (Conj I Ψ)
show ?case
proof safe

fix p q R
assume case_assms:

‹ eta_simulation R› ‹ R p q›
‹ Conj I Ψ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
‹ hml_srbb_inner_models p (Conj I Ψ)›

hence conj_price: ‹ ∀ i∈I. Ψ i ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
unfolding O_conjunct_def O_inner_def
by (simp, metis SUP_bot_conv(1) le_zero_eq sup_bot_left sup_ge1)
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from case_assms have ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)› by auto
hence ‹ ∀ i∈I. hml_srbb_conjunct_models q (Ψ i)›

using Conj ‹ eta_simulation R› ‹ R p q› conj_price by blast
hence ‹ hml_srbb_inner_models q (hml_srbb_inner.Conj I Ψ)› by simp
thus ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (hml_srbb_inner.Conj I Ψ)›

using silent_reachable.refl by blast
qed

next
case (StableConj I Ψ)
thus ?case unfolding O_inner_def O_def by auto

next
case (BranchConj α ϕ I Ψ)
show ?case
proof safe

fix p q R
assume case_assms:

‹ eta_simulation R› ‹ R p q›
‹ BranchConj α ϕ I Ψ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
‹ hml_srbb_inner_models p (BranchConj α ϕ I Ψ)›

hence ‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)› unfolding O_inner_def O_def
by (simp, metis le_zero_eq sup_ge1)

hence no_imm_conj: ‹ @ I Ψ. ϕ = ImmConj I Ψ ∧ I 6= {}› unfolding O_def by force
have back_step: ‹ ∀ p0 p1. p1 |=SRBB ϕ −→ p0 →→ p1 −→ p0 |=SRBB ϕ›
proof (cases ϕ)

case TT
then show ?thesis by auto

next
case (Internal _)
then show ?thesis

using silent_reachable_trans by auto
next

case (ImmConj _ _)
then show ?thesis using no_imm_conj by auto

qed
from case_assms have conj_price: ‹ ∀ i∈I. Ψ i ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ 0 0)›

unfolding O_conjunct_def O_inner_def
by (simp, metis SUP_bot_conv(1) bot_enat_def bot_eq_sup_iff)

from case_assms have ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)›
‹ hml_srbb_inner_models p (Obs α ϕ)›

using branching_conj_parts branching_conj_obs by blast+
then obtain p’ where ‹ p 7→a α p’› ‹ p’ |=SRBB ϕ› by auto
then obtain q’ q’’ q’’’ where q’_q’’_spec:

‹ q →→ q’› ‹ q’ 7→a α q’’› ‹ q’’ →→ q’’’›
‹ R p q’› ‹ R p’ q’’’›
using ‹ eta_simulation R› ‹ R p q› silent_reachable.refl
unfolding eta_simulation_def by blast

hence ‹ q’’’ |=SRBB ϕ›
using BranchConj ‹ p’ |=SRBB ϕ› ‹ϕ ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)› case_assms by auto

hence ‹ q’’ |=SRBB ϕ› using back_step q’_q’’_spec by blast
hence ‹ hml_srbb_inner_models q’ (Obs α ϕ)› using q’_q’’_spec by auto
moreover have ‹ ∀ i∈I. hml_srbb_conjunct_models q’ (Ψ i)›

using BranchConj q’_q’’_spec conj_price case_assms
‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)›

by blast
ultimately show ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (BranchConj α ϕ I Ψ)›

using ‹ q →→ q’› by auto
qed

next
case (Pos χ)
show ?case
proof safe

57



fix p q R
assume case_assms:

‹ eta_simulation R› ‹ R p q›
‹ Pos χ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
‹ hml_srbb_conjunct_models p (Pos χ)›

hence ‹χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
unfolding O_inner_def O_conjunct_def by simp

from case_assms obtain p’ where ‹ p →→ p’› ‹ hml_srbb_inner_models p’ χ› by auto
then obtain q’ where ‹ q →→ q’› ‹ hml_srbb_inner_models q’ χ›

using Pos case_assms ‹χ ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)› silence_retains_eta_sim
by (smt (verit, ccfv_threshold) silent_reachable_trans)

thus ‹ hml_srbb_conjunct_models q (Pos χ)› by auto
qed

next
case (Neg χ)
show ?case
proof safe

fix p q R
assume case_assms:

‹ eta_simulation R› ‹ R p q›
‹ Neg χ ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
‹ hml_srbb_conjunct_models p (Neg χ)›

hence False unfolding O_conjunct_def by auto
thus ‹ hml_srbb_conjunct_models q (Neg χ)› by simp

qed
qed

qed
thus ?thesis using assms by blast

qed

lemma modal_eta_sim: ‹ eta_simulation (preordered (O (E ∞ ∞ ∞ 0 0 ∞ 0 0)))›
proof -

have ‹ @ p α p’ q. (preordered (O (E ∞ ∞ ∞ 0 0 ∞ 0 0))) p q ∧ p 7→ α p’ ∧
(α 6= τ ∨ ¬(preordered (O (E ∞ ∞ ∞ 0 0 ∞ 0 0))) p’ q) ∧
(∀ q’ q’’ q’’’. q →→ q’ −→ q’ 7→ α q’’ −→ q’’ →→ q’’’

−→ ¬ preordered (O (E ∞ ∞ ∞ 0 0 ∞ 0 0)) p q’
∨ ¬ preordered (O (E ∞ ∞ ∞ 0 0 ∞ 0 0)) p’ q’’’)›

proof clarify
have less_obs:

‹ modal_depth (E ∞ ∞ ∞ 0 0 ∞ 0 0) ≤ pos_conjuncts (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
by simp

fix p α p’ q
define Qα where

‹ Qα ≡ {q’. q →→ q’ ∧ (@ϕ. ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0) ∧ distinguishes ϕ p q’)}›
assume contradiction:

‹ preordered (O (E ∞ ∞ ∞ 0 0 ∞ 0 0)) p q› ‹ p 7→ α p’›
‹ ∀ q’ q’’ q’’’. q →→ q’ −→ q’ 7→ α q’’ −→ q’’ →→ q’’’
−→ ¬ preordered (O (E ∞ ∞ ∞ 0 0 ∞ 0 0)) p q’
∨ ¬ preordered (O (E ∞ ∞ ∞ 0 0 ∞ 0 0)) p’ q’’’›

‹α 6= τ ∨ ¬ preordered (O (E ∞ ∞ ∞ 0 0 ∞ 0 0)) p’ q›
hence distinctions: ‹ ∀ q’. q →→ q’ −→

(∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p q’) ∨
(∀ q’’ q’’’. q’ 7→a α q’’ −→ q’’ →→ q’’’
−→ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p’ q’’’))›

unfolding preordered_no_distinction
by (metis silent_reachable.cases silent_reachable.refl)

hence ‹ ∀ q’’ q’’’ . ∀ q’∈Qα.
q’ 7→a α q’’ −→ q’’ →→ q’’’
−→ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p’ q’’’)›

unfolding Qα_def using silent_reachable.refl by fastforce
hence ‹ ∀ q’’ q’’’. q’’ →→ q’’’ −→
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(∃ q’. q →→ q’ ∧ (@ϕ. ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0) ∧ distinguishes ϕ p q’)
∧ q’ 7→a α q’’)
−→ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p’ q’’’)›

unfolding Qα_def by blast
hence ‹ ∀ q’’’. (∃ q’ q’’. q →→ q’ ∧

(@ϕ. ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0) ∧ distinguishes ϕ p q’) ∧ q’ 7→a α q’’
∧ q’’ →→ q’’’)

−→ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p’ q’’’)›
by blast

then obtain Φα where Φα_def:
‹ ∀ q’’’. (∃ q’ q’’. q →→ q’ ∧

(@ϕ. ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0) ∧ distinguishes ϕ p q’)
∧ q’ 7→a α q’’ ∧ q’’ →→ q’’’)

−→ (Φα q’’’) ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0) ∧ distinguishes (Φα q’’’) p’ q’’’›
by metis

hence distinctions_α: ‹ ∀ q’∈Qα. ∀ q’’ q’’’.
q’ 7→a α q’’ −→ q’’ →→ q’’’ −→ distinguishes (Φα q’’’) p’ q’’’›

unfolding Qα_def by blast
from distinctions obtain Φη where

‹ ∀ q’. q’∈{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p q’)}
−→ distinguishes (Φη q’) p q’ ∧ (Φη q’) ∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)›

unfolding mem_Collect_eq by moura
then obtain Ψη where distinctions_η:

‹ ∀ q’∈{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p q’)}.
hml_srbb_conj.distinguishes (Ψη q’) p q’ ∧ (Ψη q’)
∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ 0 0)›

using less_obs distinction_conjunctification distinction_conjunctification_price
by (smt (verit, del_insts))

have ‹ p 7→a α p’› using ‹ p 7→ α p’› by auto
from distinction_combination_eta[OF this] distinctions_α have obs_dist:

‹ ∀ q’∈Qα. hml_srbb_inner.distinguishes
(Obs α (Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(conjunctify_distinctions Φα p’)))) p q’›
unfolding Qα_def by blast

have ‹ Qα 6= {}›
using Qα_def contradiction(1) silent_reachable.refl by fastforce

hence conjunct_prices: ‹ ∀ q’’’∈{q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}.
(conjunctify_distinctions Φα p’ q’’’) ∈ O_conjunct (E ∞ ∞ ∞ 0 0 ∞ 0 0)›

using distinction_conjunctification_price[of
‹ {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}› ]

using Qα_def Φα_def by auto
have ‹ (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(conjunctify_distinctions Φα p’)) ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
proof (cases ‹ {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’} = {}› )

case True
then show ?thesis

unfolding O_inner_def O_conjunct_def
by (auto simp add: True bot_enat_def)

next
case False
then show ?thesis

using conjunct_prices
unfolding O_inner_def O_conjunct_def by force

qed
hence obs_price: ‹ (Obs α (Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(conjunctify_distinctions Φα p’)))) ∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
using distinction_conjunctification_price distinctions_α
unfolding O_inner_def O_def by simp

from obs_dist distinctions_η have
‹ hml_srbb_inner_models p (BranchConj α

(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
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(conjunctify_distinctions Φα p’)))
{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p q’)} Ψη)›

using contradiction(1) silent_reachable.refl
unfolding Qα_def by force

moreover have ‹ ∀ q’. q →→ q’ −→ ¬ hml_srbb_inner_models q’
(BranchConj α

(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
(conjunctify_distinctions Φα p’)))

{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p q’)} Ψη)›
proof safe

fix q’
assume contradiction: ‹ q →→ q’›

‹ hml_srbb_inner_models q’ (BranchConj α
(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(conjunctify_distinctions Φα p’)))
{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p q’)} Ψη)›

thus ‹ False›
using obs_dist distinctions_η
unfolding distinguishes_def hml_srbb_conj.distinguishes_def

hml_srbb_inner.distinguishes_def Qα_def
by (auto) blast+

qed
moreover have branch_price: ‹ (BranchConj α

(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}
(conjunctify_distinctions Φα p’)))

{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p q’)} Ψη)
∈ O_inner (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
using distinctions_η obs_price
unfolding Qα_def O_inner_def O_def O_conjunct_def Φα_def
by (simp, metis (mono_tags, lifting) SUP_bot_conv(2) bot_enat_def sup_bot_left)

ultimately have ‹ distinguishes (Internal (BranchConj α
(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(conjunctify_distinctions Φα p’)))
{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p q’)} Ψη)) p q›

unfolding distinguishes_def Qα_def
using silent_reachable.refl hml_srbb_models.simps(2) by blast

moreover have ‹ (Internal (BranchConj α
(Internal (Conj {q’’’. ∃ q’∈Qα. ∃ q’’. q’ 7→a α q’’ ∧ q’’ →→ q’’’}

(conjunctify_distinctions Φα p’)))
{q’. q →→ q’ ∧ (∃ϕ∈O (E ∞ ∞ ∞ 0 0 ∞ 0 0). distinguishes ϕ p q’)} Ψη))

∈ O (E ∞ ∞ ∞ 0 0 ∞ 0 0)›
using branch_price
unfolding Qα_def O_def O_conjunct_def
by (metis (no_types, lifting) O_inner_def expr_internal_eq mem_Collect_eq)

ultimately show False using contradiction(1) preordered_no_distinction by blast
qed
thus ?thesis

unfolding eta_simulation_def by blast
qed

theorem eta_sim_coordinate:
‹ (p � (E ∞ ∞ ∞ 0 0 ∞ 0 0) q) = (∃ R. eta_simulation R ∧ R p q)›

using modal_eta_sim logic_eta_sim_invariant unfolding expr_preord_def
by auto

end

end
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6 Branching Bisimilarity
theory Branching_Bisimilarity

imports Eta_Bisimilarity
begin

The whole of the modal logic of hml_srbb precisely characterizes stability-respecting branching
bisimilarity.

6.1 Definitions of (Stability-Respecting) Branching Bisimilarity
context lts_tau
begin

definition branching_simulation :: ‹ (’s ⇒ ’s ⇒ bool) ⇒ bool› where
‹ branching_simulation R ≡ ∀ p α p’ q. R p q −→ p 7→ α p’ −→

((α = τ ∧ R p’ q) ∨ (∃ q’ q’’. q →→ q’ ∧ q’ 7→ α q’’ ∧ R p q’ ∧ R p’ q’’))›

lemma branching_simulation_intro:
assumes

‹
∧

p α p’ q. R p q =⇒ p 7→ α p’ =⇒
((α = τ ∧ R p’ q) ∨ (∃ q’ q’’. q →→ q’ ∧ q’ 7→ α q’’ ∧ R p q’ ∧ R p’ q’’))›

shows
‹ branching_simulation R›

using assms unfolding branching_simulation_def by simp

definition branching_simulated :: ‹ ’s ⇒ ’s ⇒ bool› where
‹ branching_simulated p q ≡ ∃ R. branching_simulation R ∧ R p q›

definition branching_bisimulated :: ‹ ’s ⇒ ’s ⇒ bool› where
‹ branching_bisimulated p q ≡ ∃ R. branching_simulation R ∧ symp R ∧ R p q›

definition sr_branching_bisimulated :: ‹ ’s ⇒ ’s ⇒ bool› (infix ‹ ~SRBB› 40) where
‹ p ~SRBB q ≡ ∃ R. branching_simulation R ∧ symp R ∧ stability_respecting R ∧ R p q›

6.2 Properties of Branching Bisimulation Equivalences
lemma branching_bisimilarity_branching_sim: ‹ branching_simulation (~SRBB)›

unfolding sr_branching_bisimulated_def branching_simulation_def by blast

lemma branching_sim_eta_sim:
assumes ‹ branching_simulation R›
shows ‹ eta_simulation R›
using assms silent_reachable.refl
unfolding branching_simulation_def eta_simulation_def by blast

lemma silence_retains_branching_sim:
assumes

‹ branching_simulation R›
‹ R p q›
‹ p →→ p’›

shows ‹ ∃ q’. R p’ q’ ∧ q →→ q’›
using assms silence_retains_eta_sim branching_sim_eta_sim by blast

lemma branching_bisimilarity_stability: ‹ stability_respecting (~SRBB)›
unfolding sr_branching_bisimulated_def stability_respecting_def by blast

lemma sr_branching_bisimulation_silently_retained:
assumes

‹ p ~SRBB q›
‹ p →→ p’›
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shows
‹ ∃ q’. q →→ q’ ∧ p’ ~SRBB q’› using assms(2,1)

using branching_bisimilarity_branching_sim silence_retains_branching_sim by blast

lemma sr_branching_bisimulation_sim:
assumes

‹ p ~SRBB q›
‹ p →→ p’› ‹ p’ 7→a α p’’›

shows
‹ ∃ q’ q’’. q →→ q’ ∧ q’ 7→a α q’’ ∧ p’ ~SRBB q’ ∧ p’’ ~SRBB q’’›

proof -
obtain q’ where ‹ q →→ q’› ‹ sr_branching_bisimulated p’ q’›

using assms sr_branching_bisimulation_silently_retained by blast
thus ?thesis

using assms(3) branching_bisimilarity_branching_sim silent_reachable_trans
unfolding branching_simulation_def
by blast

qed

lemma sr_branching_bisimulated_sym:
assumes

‹ p ~SRBB q›
shows

‹ q ~SRBB p›
using assms unfolding sr_branching_bisimulated_def by (meson sympD)

lemma sr_branching_bisimulated_symp:
shows ‹ symp (~SRBB)›
using sr_branching_bisimulated_sym
using sympI by blast

lemma sr_branching_bisimulated_reflp:
shows ‹ reflp (~SRBB)›

unfolding sr_branching_bisimulated_def stability_respecting_def reflp_def
using silence_retains_branching_sim silent_reachable.refl
by (smt (verit) DEADID.rel_symp branching_simulation_intro)

lemma establish_sr_branching_bisim:
assumes

‹ ∀α p’. p 7→ α p’ −→
((α = τ ∧ p’ ~SRBB q) ∨ (∃ q’ q’’. q →→ q’ ∧ q’ 7→ α q’’ ∧ p ~SRBB q’ ∧ p’ ~SRBB q’’))›
‹ ∀α q’. q 7→ α q’ −→
((α = τ ∧ p ~SRBB q’) ∨ (∃ p’ p’’. p →→ p’ ∧ p’ 7→ α p’’ ∧ p’ ~SRBB q ∧ p’’ ~SRBB q’))›
‹ stable_state p −→ (∃ q’. q →→ q’ ∧ p ~SRBB q’ ∧ stable_state q’)›
‹ stable_state q −→ (∃ p’. p →→ p’ ∧ p’ ~SRBB q ∧ stable_state p’)›

shows ‹ p ~SRBB q›
proof -

define R where ‹ R ≡ λpp qq. pp ~SRBB qq ∨ (pp = p ∧ qq = q) ∨ (pp = q ∧ qq = p)›
hence

R_cases: ‹
∧

pp qq. R pp qq =⇒ pp ~SRBB qq ∨ (pp = p ∧ qq = q) ∨ (pp = q ∧ qq = p)› and
bisim_extension: ‹ ∀ pp qq. pp ~SRBB qq −→ R pp qq› by blast+

have ‹ symp R›
unfolding symp_def R_def sr_branching_bisimulated_def
by blast

moreover have ‹ stability_respecting R›
unfolding stability_respecting_def

proof safe
fix pp qq
assume ‹ R pp qq› ‹ stable_state pp›
then consider ‹ pp ~SRBB qq› | ‹ pp = p ∧ qq = q› | ‹ pp = q ∧ qq = p›

using R_cases by blast
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thus ‹ ∃ q’. qq →→ q’ ∧ R pp q’ ∧ stable_state q’›
proof cases

case 1
then show ?thesis

using branching_bisimilarity_stability ‹ stable_state pp› bisim_extension
unfolding stability_respecting_def
by blast

next
case 2
then show ?thesis

using assms(3) ‹ stable_state pp› unfolding R_def by blast
next

case 3
then show ?thesis

using assms(4) ‹ stable_state pp› ‹ symp R› unfolding R_def
by (meson sr_branching_bisimulated_sym)

qed
qed
moreover have ‹ branching_simulation R› unfolding branching_simulation_def
proof clarify

fix pp α p’ qq
assume bc:

‹ R pp qq› ‹ pp 7→ α p’›
‹ @ q’ q’’. qq →→ q’ ∧ q’ 7→ α q’’ ∧ R pp q’ ∧ R p’ q’’›

then consider ‹ pp ~SRBB qq› | ‹ pp = p ∧ qq = q› | ‹ pp = q ∧ qq = p›
using R_cases by blast

thus ‹α = τ ∧ R p’ qq›
proof cases

case 1
then show ?thesis

by (smt (verit, del_insts) bc bisim_extension
branching_bisimilarity_branching_sim branching_simulation_def)

next
case 2
then show ?thesis

using bc assms(1) bisim_extension by blast
next

case 3
then show ?thesis

using bc assms(2) bisim_extension sr_branching_bisimulated_sym by metis
qed

qed
moreover have ‹ R p q› unfolding R_def by blast
ultimately show ?thesis

unfolding sr_branching_bisimulated_def by blast
qed

lemma sr_branching_bisimulation_stuttering:
assumes

‹ pp 6= []›
‹ ∀ i < length pp - 1. pp!i 7→ τ pp!(Suc i)›
‹ hd pp ~SRBB last pp›
‹ i < length pp›

shows
‹ hd pp ~SRBB pp!i›

proof -
have chain_reachable: ‹ ∀ j < length pp. ∀ i ≤ j. pp!i →→ pp!j›

using tau_chain_reachabilty assms(2) .
hence chain_hd_last:

‹ ∀ i < length pp. hd pp →→ pp!i›
‹ ∀ i < length pp. pp!i →→ last pp›
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by (auto simp add: assms(1) hd_conv_nth last_conv_nth)
define R where

‹ R ≡ λp q. (p = hd pp ∧ (∃ i < length pp. pp!i = q))
∨ ((q = hd pp ∧ (∃ i < length pp. pp!i = p))) ∨ p ~SRBB q›

have later_hd_sim: ‹
∧

i p’ α. i < length pp =⇒ pp!i 7→ α p’
=⇒ (hd pp) →→ (pp!i) ∧ (pp!i) 7→ α p’ ∧ R (pp!i) (pp!i) ∧ R p’ p’›
using chain_hd_last sr_branching_bisimulated_reflp
unfolding R_def
by (simp add: reflp_def)

have hd_later_sim: ‹
∧

i p’ α. i < length pp - 1 =⇒ (hd pp) 7→ α p’
=⇒ (∃ q’ q’’. (pp!i) →→ q’ ∧ q’ 7→ α q’’ ∧ R (hd pp) q’ ∧ R p’ q’’)›

proof -
fix i p’ α
assume case_assm: ‹ i < length pp - 1› ‹ (hd pp) 7→ α p’›
hence ‹ (α = τ ∧ p’ ~SRBB (last pp))

∨ (∃ q’ q’’. (last pp) →→ q’ ∧ q’ 7→ α q’’ ∧ (hd pp) ~SRBB q’ ∧ p’ ~SRBB q’’)›
using assms branching_bisimilarity_branching_sim branching_simulation_def
by auto

thus ‹ (∃ q’ q’’. (pp!i) →→ q’ ∧ q’ 7→ α q’’ ∧ R (hd pp) q’ ∧ R p’ q’’)›
proof

assume tau_null_step: ‹α = τ ∧ p’ ~SRBB last pp›
have ‹ pp ! i →→ (pp!(length pp - 2))›

using case_assm(1) chain_reachable by force
moreover have ‹ pp!(length pp - 2) 7→ α (last pp)›

using assms(1,2) case_assm(1) last_conv_nth tau_null_step
by (metis Nat.lessE Suc_1 Suc_diff_Suc less_Suc_eq zero_less_Suc zero_less_diff)

moreover have ‹ R (hd pp) (pp!(length pp - 2)) ∧ R p’ (last pp)›
unfolding R_def
by (metis assms(1) diff_less length_greater_0_conv less_2_cases_iff tau_null_step)

ultimately show ‹ ∃ q’ q’’. pp ! i →→ q’ ∧ q’ 7→ α q’’ ∧ R (hd pp) q’ ∧ R p’ q’’›
by blast

next
assume ‹ ∃ q’ q’’. last pp →→ q’ ∧ q’ 7→ α q’’ ∧ hd pp ~SRBB q’ ∧ p’ ~SRBB q’’›
hence ‹ ∃ q’ q’’. last pp →→ q’ ∧ q’ 7→ α q’’ ∧ R (hd pp) q’ ∧ R p’ q’’›

unfolding R_def by blast
moreover have ‹ i < length pp› using case_assm by auto
ultimately show ‹ ∃ q’ q’’. pp ! i →→ q’ ∧ q’ 7→ α q’’ ∧ R (hd pp) q’ ∧ R p’ q’’›

using chain_hd_last silent_reachable_trans by blast
qed

qed
have ‹ branching_simulation R›
proof (rule branching_simulation_intro)

fix p α p’ q
assume challenge: ‹ R p q› ‹ p 7→ α p’›
from this(1) consider

‹ (p = hd pp ∧ (∃ i < length pp. pp!i = q))› |
‹ (q = hd pp ∧ (∃ i < length pp. pp!i = p))› |
‹ p ~SRBB q› unfolding R_def by blast

thus ‹α = τ ∧ R p’ q ∨ (∃ q’ q’’. q →→ q’ ∧ q’ 7→ α q’’ ∧ R p q’ ∧ R p’ q’’)›
proof cases

case 1
then obtain i where i_spec: ‹ i < length pp› ‹ pp ! i = q› by blast
from 1 have ‹ p = hd pp› ..
show ?thesis
proof (cases ‹ i = length pp - 1› )

case True
then have ‹ q = last pp› using i_spec assms(1)

by (simp add: last_conv_nth)
then show ?thesis using challenge(2) assms(3) branching_bisimilarity_branching_sim

unfolding R_def branching_simulation_def ‹ p = hd pp›
by metis
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next
case False
hence ‹ i < length pp - 1› using i_spec by auto
then show ?thesis using ‹ p = hd pp› i_spec hd_later_sim challenge(2) by blast

qed
next

case 2
then show ?thesis

using later_hd_sim challenge(2) by blast
next

case 3
then show ?thesis

using challenge(2) branching_bisimilarity_branching_sim
unfolding branching_simulation_def R_def by metis

qed
qed
moreover have ‹ symp R›

using sr_branching_bisimulated_sym
unfolding R_def sr_branching_bisimulated_def
by (smt (verit, best) sympI)

moreover have ‹ stability_respecting R›
using assms(3) stable_state_stable sr_branching_bisimulated_sym

branching_bisimilarity_stability
unfolding R_def stability_respecting_def
by (metis chain_hd_last)

moreover have ‹
∧

i. i < length pp =⇒ R (hd pp) (pp!i)› unfolding R_def by auto
ultimately show ?thesis

using assms(4) sr_branching_bisimulated_def by blast
qed

lemma sr_branching_bisimulation_stabilizes:
assumes

‹ sr_branching_bisimulated p q›
‹ stable_state p›

shows
‹ ∃ q’. q →→ q’ ∧ sr_branching_bisimulated p q’ ∧ stable_state q’›

proof -
from assms obtain R where

R_spec: ‹ branching_simulation R› ‹ symp R› ‹ stability_respecting R› ‹ R p q›
unfolding sr_branching_bisimulated_def by blast

then obtain q’ where ‹ q →→ q’› ‹ stable_state q’›
using assms(2) unfolding stability_respecting_def by blast

moreover have ‹ sr_branching_bisimulated p q’›
using sr_branching_bisimulation_stuttering
assms(1) calculation(1) sr_branching_bisimulated_def sympD

by (metis assms(2) sr_branching_bisimulation_silently_retained stable_state_stable)
ultimately show ?thesis by blast

qed

lemma sr_branching_bisim_stronger:
assumes

‹ sr_branching_bisimulated p q›
shows

‹ branching_bisimulated p q›
using assms unfolding sr_branching_bisimulated_def branching_bisimulated_def by auto

6.3 hml_srbb as Modal Characterization of Stability-Respecting Branching
Bisimilarity

lemma modal_sym: ‹ symp (preordered UNIV)›
proof -
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have ‹ @ p q. preordered UNIV p q ∧ ¬preordered UNIV q p›
proof safe

fix p q
assume contradiction:

‹ preordered UNIV p q›
‹¬preordered UNIV q p›

then obtain ϕ where ϕ_distinguishes: ‹ distinguishes ϕ q p› by auto
thus False
proof (cases ϕ)

case TT
then show ?thesis using ϕ_distinguishes by auto

next
case (Internal χ)
hence ‹ distinguishes (ImmConj {undefined} (λi. Neg χ)) p q›

using ϕ_distinguishes by simp
then show ?thesis using contradiction preordered_no_distinction by blast

next
case (ImmConj I Ψ)
then obtain i where i_def: ‹ i ∈ I› ‹ hml_srbb_conj.distinguishes (Ψ i) q p›

using ϕ_distinguishes srbb_dist_imm_conjunction_implies_dist_conjunct by auto
then show ?thesis
proof (cases ‹Ψ i› )

case (Pos χ)
hence ‹ distinguishes (ImmConj {undefined} (λi. Neg χ)) p q› using i_def by simp
thus ?thesis using contradiction preordered_no_distinction by blast

next
case (Neg χ)
hence ‹ distinguishes (Internal χ) p q› using i_def by simp
thus ?thesis using contradiction preordered_no_distinction by blast

qed
qed

qed
thus ?thesis unfolding symp_def by blast

qed

lemma modal_branching_sim: ‹ branching_simulation (preordered UNIV)›
proof -

have ‹ @ p α p’ q. (preordered UNIV) p q ∧ p 7→ α p’ ∧
(α 6= τ ∨ ¬(preordered UNIV) p’ q) ∧
(∀ q’ q’’. q →→ q’ −→ q’ 7→ α q’’
−→ ¬ preordered UNIV p q’ ∨ ¬ preordered UNIV p’ q’’)›

proof clarify
fix p α p’ q
define Qα where ‹ Qα ≡ {q’. q →→ q’ ∧ (@ϕ. distinguishes ϕ p q’)}›
assume contradiction:

‹ preordered UNIV p q› ‹ p 7→ α p’›
‹ ∀ q’ q’’. q →→ q’ −→ q’ 7→ α q’’
−→ ¬ preordered UNIV p q’ ∨ ¬ preordered UNIV p’ q’’›

‹α 6= τ ∨ ¬ preordered UNIV p’ q›
hence distinctions: ‹ ∀ q’. q →→ q’ −→

(∃ϕ. distinguishes ϕ p q’) ∨
(∀ q’’. q’ 7→a α q’’ −→ (∃ϕ. distinguishes ϕ p’ q’’))›
using preordered_no_distinction
by (metis equivpI equivp_def lts_semantics.preordered_preord modal_sym)

hence ‹ ∀ q’’. ∀ q’∈Qα.
q’ 7→a α q’’ −→ (∃ϕ. distinguishes ϕ p’ q’’)›

unfolding Qα_def by auto
hence ‹ ∀ q’’. (∃ q’. q →→ q’ ∧ (@ϕ. distinguishes ϕ p q’) ∧ q’ 7→a α q’’)

−→ (∃ϕ. distinguishes ϕ p’ q’’)›
unfolding Qα_def by blast

then obtain Φα where
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‹ ∀ q’’. (∃ q’. q →→ q’ ∧ (@ϕ. distinguishes ϕ p q’) ∧ q’ 7→a α q’’)
−→ distinguishes (Φα q’’) p’ q’’› by metis

hence distinctions_α: ‹ ∀ q’∈Qα. ∀ q’’.
q’ 7→a α q’’ −→ distinguishes (Φα q’’) p’ q’’›

unfolding Qα_def by blast
from distinctions obtain Φη where

‹ ∀ q’. q’∈{q’. q →→ q’ ∧ (∃ϕ. distinguishes ϕ p q’)}
−→ distinguishes (Φη q’) p q’› unfolding mem_Collect_eq by moura

with distinction_conjunctification obtain Ψη where distinctions_η:
‹ ∀ q’∈{q’. q →→ q’ ∧ (∃ϕ. distinguishes ϕ p q’)}.

hml_srbb_conj.distinguishes (Ψη q’) p q’›
by blast

have ‹ p 7→a α p’› using ‹ p 7→ α p’› by auto
from distinction_combination[OF this] distinctions_α have obs_dist:

‹ ∀ q’∈Qα.
hml_srbb_inner.distinguishes (Obs α (ImmConj {q’’. ∃ q’’’∈Qα. q’’’ 7→a α q’’}

(conjunctify_distinctions Φα p’))) p q’›
unfolding Qα_def by blast

with distinctions_η have
‹ hml_srbb_inner_models p (BranchConj α

(ImmConj {q’’. ∃ q’’’∈Qα. q’’’ 7→a α q’’}
(conjunctify_distinctions Φα p’))

{q’. q →→ q’ ∧ (∃ϕ. distinguishes ϕ p q’)} Ψη)›
using contradiction(1) silent_reachable.refl
unfolding Qα_def distinguishes_def hml_srbb_conj.distinguishes_def

hml_srbb_inner.distinguishes_def preordered_def
by simp force

moreover have ‹ ∀ q’. q →→ q’ −→ ¬ hml_srbb_inner_models q’
(BranchConj α (ImmConj {q’’. ∃ q’’’∈Qα. q’’’ 7→a α q’’}

(conjunctify_distinctions Φα p’)) {q’. q →→ q’ ∧ (∃ϕ. distinguishes ϕ p q’)} Ψη)›
proof safe

fix q’
assume contradiction: ‹ q →→ q’›

‹ hml_srbb_inner_models q’ (BranchConj α (ImmConj {q’’. ∃ q’’’∈Qα. q’’’ 7→a α q’’}
(conjunctify_distinctions Φα p’)) {q’. q →→ q’ ∧ (∃ϕ. distinguishes ϕ p q’)} Ψη)›

thus ‹ False›
using obs_dist distinctions_η
unfolding distinguishes_def hml_srbb_conj.distinguishes_def

hml_srbb_inner.distinguishes_def Qα_def
by (auto) blast+

qed
ultimately have ‹ distinguishes (Internal (BranchConj α

(ImmConj {q’’. ∃ q’’’∈Qα. q’’’ 7→a α q’’} (conjunctify_distinctions Φα p’))
{q’. q →→ q’ ∧ (∃ϕ. distinguishes ϕ p q’)} Ψη)) p q›

unfolding distinguishes_def Qα_def
using silent_reachable.refl by (auto) blast+

thus False using contradiction(1) preordered_no_distinction by blast
qed
thus ?thesis

unfolding branching_simulation_def by blast
qed

lemma logic_sr_branching_bisim_invariant:
assumes

‹ sr_branching_bisimulated p0 q0›
‹ p0 |=SRBB ϕ›

shows ‹ q0 |=SRBB ϕ›
proof -

have ‹
∧
ϕ χ ψ.

(∀ p q. sr_branching_bisimulated p q −→ p |=SRBB ϕ −→ q |=SRBB ϕ) ∧
(∀ p q. sr_branching_bisimulated p q −→ hml_srbb_inner_models p χ
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−→ (∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ)) ∧
(∀ p q. sr_branching_bisimulated p q −→ hml_srbb_conjunct_models p ψ

−→ hml_srbb_conjunct_models q ψ)›
proof -

fix ϕ χ ψ
show

‹ (∀ p q. sr_branching_bisimulated p q −→ p |=SRBB ϕ −→ q |=SRBB ϕ) ∧
(∀ p q. sr_branching_bisimulated p q −→ hml_srbb_inner_models p χ
−→ (∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ)) ∧

(∀ p q. sr_branching_bisimulated p q −→ hml_srbb_conjunct_models p ψ
−→ hml_srbb_conjunct_models q ψ)›

proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct)
case TT
then show ?case by simp

next
case (Internal χ)
show ?case
proof safe

fix p q
assume ‹ sr_branching_bisimulated p q› ‹ p |=SRBB hml_srbb.Internal χ›
then obtain p’ where ‹ p →→ p’› ‹ hml_srbb_inner_models p’ χ› by auto
hence ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ›

using Internal ‹ hml_srbb_inner_models p’ χ›
by (meson lts_tau.silent_reachable_trans ‹ p ~SRBB q›

sr_branching_bisimulation_silently_retained)
thus ‹ q |=SRBB hml_srbb.Internal χ› by auto

qed
next

case (ImmConj I Ψ)
then show ?case by auto

next
case (Obs α ϕ)
then show ?case
proof (safe)

fix p q
assume

‹ sr_branching_bisimulated p q›
‹ hml_srbb_inner_models p (hml_srbb_inner.Obs α ϕ)›

then obtain p’ where ‹ p 7→a α p’› ‹ p’ |=SRBB ϕ› by auto
then obtain q’ q’’ where ‹ q →→ q’› ‹ q’ 7→a α q’’› ‹ sr_branching_bisimulated p’ q’’›

using sr_branching_bisimulation_sim[OF ‹ sr_branching_bisimulated p q› ]
silent_reachable.refl

by blast
hence ‹ q’’ |=SRBB ϕ› using ‹ p’ |=SRBB ϕ› Obs by blast
hence ‹ hml_srbb_inner_models q’ (hml_srbb_inner.Obs α ϕ)›

using ‹ q’ 7→a α q’’› by auto
thus ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (hml_srbb_inner.Obs α ϕ)›

using ‹ q →→ q’› by blast
qed

next
case (Conj I Ψ)
show ?case
proof safe

fix p q
assume

‹ sr_branching_bisimulated p q›
‹ hml_srbb_inner_models p (hml_srbb_inner.Conj I Ψ)›

hence ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)› by auto
hence ‹ ∀ i∈I. hml_srbb_conjunct_models q (Ψ i)›

using Conj ‹ sr_branching_bisimulated p q› by blast
hence ‹ hml_srbb_inner_models q (hml_srbb_inner.Conj I Ψ)› by simp
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thus ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (hml_srbb_inner.Conj I Ψ)›
using silent_reachable.refl by blast

qed
next

case (StableConj I Ψ) show ?case
proof safe

fix p q
assume

‹ sr_branching_bisimulated p q›
‹ hml_srbb_inner_models p (StableConj I Ψ)›

hence ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)›
using stable_conj_parts by blast

from ‹ hml_srbb_inner_models p (StableConj I Ψ)› have ‹ stable_state p› by auto
then obtain q’ where ‹ q →→ q’› ‹ stable_state q’› ‹ sr_branching_bisimulated p q’›

using ‹ sr_branching_bisimulated p q› sr_branching_bisimulation_stabilizes by blast
hence ‹ ∀ i∈I. hml_srbb_conjunct_models q’ (Ψ i)›

using ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)› StableConj by blast
hence ‹ hml_srbb_inner_models q’ (StableConj I Ψ)› using ‹ stable_state q’› by simp
thus ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (StableConj I Ψ)›

using ‹ q →→ q’› by blast
qed

next
case (BranchConj α ϕ I Ψ)
show ?case
proof safe

fix p q
assume

‹ sr_branching_bisimulated p q›
‹ hml_srbb_inner_models p (BranchConj α ϕ I Ψ)›

hence ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)›
‹ hml_srbb_inner_models p (Obs α ϕ)›

using branching_conj_parts branching_conj_obs by blast+
then obtain p’ where ‹ p 7→a α p’› ‹ p’ |=SRBB ϕ› by auto
then obtain q’ q’’ where q’_q’’_spec:

‹ q →→ q’› ‹ q’ 7→a α q’’›
‹ sr_branching_bisimulated p q’› ‹ sr_branching_bisimulated p’ q’’›
using sr_branching_bisimulation_sim[OF ‹ sr_branching_bisimulated p q› ]

silent_reachable.refl[of p]
by blast

hence ‹ q’’ |=SRBB ϕ› using BranchConj.hyps ‹ p’ |=SRBB ϕ› by auto
hence ‹ hml_srbb_inner_models q’ (Obs α ϕ)› using q’_q’’_spec by auto
moreover have ‹ ∀ i∈I. hml_srbb_conjunct_models q’ (Ψ i)›

using BranchConj.hyps ‹ ∀ i∈I. hml_srbb_conjunct_models p (Ψ i)› q’_q’’_spec by blast
ultimately show ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ (BranchConj α ϕ I Ψ)›

using ‹ q →→ q’› by auto
qed

next
case (Pos χ)
show ?case
proof safe

fix p q
assume

‹ sr_branching_bisimulated p q›
‹ hml_srbb_conjunct_models p (Pos χ)›

then obtain p’ where ‹ p →→ p’› ‹ hml_srbb_inner_models p’ χ› by auto
then obtain q’ where ‹ q →→ q’› ‹ hml_srbb_inner_models q’ χ›

using Pos ‹ p ~SRBB q› sr_branching_bisimulation_silently_retained
by (meson silent_reachable_trans)

thus ‹ hml_srbb_conjunct_models q (Pos χ)› by auto
qed

next
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case (Neg χ)
show ?case
proof safe

fix p q
assume

‹ sr_branching_bisimulated p q›
‹ hml_srbb_conjunct_models p (Neg χ)›

hence ‹ ∀ p’. p →→ p’ −→ ¬hml_srbb_inner_models p’ χ› by simp
moreover have

‹ (∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ)
−→ (∃ p’. p →→ p’ ∧ hml_srbb_inner_models p’ χ)›

using Neg sr_branching_bisimulated_sym[OF ‹ sr_branching_bisimulated p q› ]
sr_branching_bisimulation_silently_retained

by (meson silent_reachable_trans)
ultimately have ‹ ∀ q’. q →→ q’ −→ ¬hml_srbb_inner_models q’ χ› by blast
thus ‹ hml_srbb_conjunct_models q (Neg χ)› by simp

qed
qed

qed
thus ?thesis using assms by blast

qed

lemma sr_branching_bisim_is_hmlsrbb: ‹ sr_branching_bisimulated p q = preordered UNIV p q›
using modal_stability_respecting modal_sym modal_branching_sim

logic_sr_branching_bisim_invariant O_sup preordered_def
unfolding sr_branching_bisimulated_def by metis

lemma sr_branching_bisimulated_transitive:
assumes

‹ p ~SRBB q›
‹ q ~SRBB r›

shows
‹ p ~SRBB r›

using assms unfolding sr_branching_bisim_is_hmlsrbb by simp

lemma sr_branching_bisimulated_equivalence: ‹ equivp (~SRBB)›
proof (rule equivpI)

show ‹ symp (~SRBB)› using sr_branching_bisimulated_symp .
show ‹ reflp (~SRBB)› using sr_branching_bisimulated_reflp .
show ‹ transp (~SRBB)›

unfolding transp_def using sr_branching_bisimulated_transitive by blast
qed

lemma sr_branching_bisimulation_stuttering_all:
assumes

‹ pp 6= []›
‹ ∀ i < length pp - 1. pp!i 7→ τ pp!(Suc i)›
‹ hd pp ~SRBB last pp›
‹ i ≤ j› ‹ j < length pp›

shows
‹ pp!i ~SRBB pp!j›

using assms equivp_def sr_branching_bisimulated_equivalence equivp_def order_le_less_trans
sr_branching_bisimulation_stuttering

by metis

theorem sr_branching_bisim_coordinate: ‹ (p ~SRBB q) = (p � (E ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞) q)›
using sr_branching_bisim_is_hmlsrbb O_sup
unfolding expr_preord_def by auto

end
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7 Energy Games
theory Energy_Games

imports Main
begin

Energy games are the foundation for the weak spectroscopy game. We introduce them through a
recursive definition of attacker’s winning budgets in energy reachability games.

7.1 Fundamentals
type_synonym ’energy update = ‹ ’energy ⇒ ’energy option›

An energy game is played by two players on a directed graph labeled by energy updates. These
updates represent the costs of choosing a certain move, in our case, for the attacker.
locale energy_game =
fixes

weight_opt :: ‹ ’gstate ⇒ ’gstate ⇒ ’energy update option› and
defender :: ‹ ’gstate ⇒ bool› and
ord:: ‹ ’energy ⇒ ’energy ⇒ bool›

assumes
antisim: ‹

∧
e e’. (ord e e’) =⇒ (ord e’ e) =⇒ e = e’› and

monotonicity: ‹
∧

g g’ e e’ eu eu’.
weight_opt g g’ 6= None =⇒ the (weight_opt g g’) e = Some eu
=⇒ the (weight_opt g g’) e’ = Some eu’ =⇒ ord e e’ =⇒ ord eu eu’› and

defender_win_min: ‹
∧

g g’ e e’. ord e e’ =⇒ weight_opt g g’ 6= None
=⇒ the (weight_opt g g’) e’ = None =⇒ the (weight_opt g g’) e = None›

begin

abbreviation attacker :: ‹ ’gstate ⇒ bool› where
‹ attacker p ≡ ¬ defender p›

abbreviation moves :: ‹ ’gstate ⇒ ’gstate ⇒ bool› (infix ‹�› 70) where
‹ g1 � g2 ≡ weight_opt g1 g2 6= None›

abbreviation weighted_move
:: ‹ ’gstate ⇒ ’energy update ⇒ ’gstate ⇒ bool› (‹ _ �wgt _ _› [60,60,60] 70) where
‹ weighted_move g1 u g2 ≡ g1 � g2 ∧ (the (weight_opt g1 g2) = u)›

abbreviation ‹ weight g1 g2 ≡ the (weight_opt g1 g2)›

abbreviation ‹ updated g g’ e ≡ the (weight g g’ e)›

7.2 Winning Budgets

The attacker wins a game if and only if they manage to force the defender to get stuck before
running out of energy.
inductive attacker_wins:: ‹ ’energy ⇒ ’gstate ⇒ bool› where

Attack: ‹ attacker_wins e g› if
‹ attacker g› ‹ g � g’› ‹ weight g g’ e = Some e’› ‹ attacker_wins e’ g’› |

Defense: ‹ attacker_wins e g› if
‹ defender g› ‹ ∀ g’. (g � g’) −→ (∃ e’. weight g g’ e = Some e’ ∧ attacker_wins e’ g’)›

lemma attacker_wins_Ga_with_id_step:
assumes ‹ attacker_wins e g’› ‹ g �wgt Some g’› ‹ attacker g›
shows ‹ attacker_wins e g›
using assms by (metis attacker_wins.simps)

If from a certain starting position g a game is won by the attacker with some energy e (i.e. e is in
the winning budget of g), then the game is also won by the attacker with more energy.
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lemma win_a_upwards_closure:
assumes

‹ attacker_wins e g›
‹ ord e e’›

shows
‹ attacker_wins e’ g›

using assms proof (induct arbitrary: e’ rule: attacker_wins.induct)
case (Attack g g’ e eu e’)
with defender_win_min obtain eu’ where ‹ weight g g’ e’ = Some eu’› by fastforce
then show ?case

using Attack monotonicity attacker_wins.simps by blast
next

case (Defense g e)
with defender_win_min have ‹ ∀ g’. g � g’ −→ (∃ eu’. weight g g’ e’ = Some eu’)› by fastforce
then show ?case

using Defense attacker_wins.Defense monotonicity by meson
qed

end — context energy_game

end
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8 Weak Spectroscopy Game
theory Spectroscopy_Game

imports Energy_Games Energy Labeled_Transition_Systems
begin

The weak spectroscopy game is an energy game played over an LTS. The attacker’s moves in the
weak spectroscopy game depend on the transitions of the processes and the available energy. Intu-
itively, each move type corresponds to a production in the construction of distinguishing formulas;
and each attacker position to a non-terminal in the underlying grammar.

8.1 Game Rules
datatype (’s, ’a) spectroscopy_position =

Attacker_Immediate (attacker_state: ‹ ’s› ) (defender_states: ‹ ’s set› ) |
Attacker_Delayed (attacker_state: ‹ ’s› ) (defender_states: ‹ ’s set› ) |
Attacker_Conjunct (attacker_state: ‹ ’s› ) (defender_state: ‹ ’s› ) |
Attacker_Branch (attacker_state: ‹ ’s› ) (defender_states: ‹ ’s set› ) |

Defender_Conj (attacker_state: ‹ ’s› ) (defender_states: ‹ ’s set› ) |
Defender_Stable_Conj (attacker_state: ‹ ’s› ) (defender_states: ‹ ’s set› ) |
Defender_Branch (attacker_state: ‹ ’s› ) (attack_action: ‹ ’a› )

(attacker_state_succ: ‹ ’s› ) (defender_states: ‹ ’s set› )
(defender_branch_states: ‹ ’s set› )

context lts_tau
begin

The names of moves of the weak spectroscopy game indicate the respective HML constructs they
correspond to.
fun spectroscopy_moves :: ‹ (’s, ’a) spectroscopy_position ⇒ (’s, ’a) spectroscopy_position
⇒ energy update option›

where
delay:

‹ spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p’ Q’)
= (if p’ = p ∧ Q →→S Q’ then id_up else None)› |

procrastination:
‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Delayed p’ Q’)

= (if (Q’ = Q ∧ p 6= p’ ∧ p 7→ τ p’) then id_up else None)› |

observation:
‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)

= (if (∃ a. p 7→a a p’ ∧ Q 7→aS a Q’) then (subtract 1 0 0 0 0 0 0 0)
else None)› |

f_or_early_conj:
‹ spectroscopy_moves (Attacker_Immediate p Q) (Defender_Conj p’ Q’)

=(if (Q 6={} ∧ Q = Q’ ∧ p = p’) then (subtract 0 0 0 0 1 0 0 0)
else None)› |

late_inst_conj:
‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p’ Q’)

= (if p = p’ ∧ Q = Q’ then id_up else None)› |

conj_answer:
‹ spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p’ q)

= (if p = p’ ∧ q ∈ Q then (subtract 0 0 1 0 0 0 0 0) else None)› |

pos_neg_clause:
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‹ spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed p’ Q’)
= (if (p = p’) then

(if {q} →→S Q’ then Some min1_6 else None)
else (if {p} →→S Q’ ∧ q=p’

then Some (λe. Option.bind (subtract_fn 0 0 0 0 0 0 0 1 e) min1_7)
else None))› |

late_stbl_conj:
‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p’ Q’)

= (if (p = p’ ∧ Q’ = { q ∈ Q. (@ q’. q 7→τ q’)} ∧ (@ p’’. p 7→τ p’’))
then id_up else None)› |

conj_s_answer:
‹ spectroscopy_moves (Defender_Stable_Conj p Q) (Attacker_Conjunct p’ q)

= (if p = p’ ∧ q ∈ Q then (subtract 0 0 0 1 0 0 0 0)
else None)› |

empty_stbl_conj_answer:
‹ spectroscopy_moves (Defender_Stable_Conj p Q) (Defender_Conj p’ Q’)

= (if Q = {} ∧ Q = Q’ ∧ p = p’ then (subtract 0 0 0 1 0 0 0 0)
else None)› |

br_conj:
‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Branch p’ α p’’ Q’ Qα)

= (if (p = p’ ∧ Q’ = Q - Qα ∧ p 7→a α p’’ ∧ Qα ⊆ Q) then id_up
else None)› |

br_answer:
‹ spectroscopy_moves (Defender_Branch p α p’ Q Qα) (Attacker_Conjunct p’’ q)

= (if (p = p’’ ∧ q ∈ Q) then (subtract 0 1 1 0 0 0 0 0) else None)› |

br_obsv:
‹ spectroscopy_moves (Defender_Branch p α p’ Q Qα) (Attacker_Branch p’’ Q’)

= (if (p’ = p’’ ∧ Qα 7→aS α Q’)
then Some (λe. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) min1_6) else None)› |

br_acct:
‹ spectroscopy_moves (Attacker_Branch p Q) (Attacker_Immediate p’ Q’)

= (if p = p’ ∧ Q = Q’ then subtract 1 0 0 0 0 0 0 0 else None)› |

others: ‹ spectroscopy_moves _ _ = None›

fun spectroscopy_defender where
‹ spectroscopy_defender (Attacker_Immediate _ _) = False› |
‹ spectroscopy_defender (Attacker_Branch _ _) = False› |
‹ spectroscopy_defender (Attacker_Conjunct _ _) = False› |
‹ spectroscopy_defender (Attacker_Delayed _ _) = False› |
‹ spectroscopy_defender (Defender_Branch _ _ _ _ _) = True› |
‹ spectroscopy_defender (Defender_Conj _ _) = True› |
‹ spectroscopy_defender (Defender_Stable_Conj _ _) = True›

8.2 Energy Game Properties

Now, we are able to define the weak spectroscopy game on an arbitrary LTS.
sublocale weak_spectroscopy_game:

energy_game ‹ spectroscopy_moves› ‹ spectroscopy_defender› ‹ (≤)›
proof

fix e e’ ::energy
show ‹ e ≤ e’ =⇒ e’ ≤ e =⇒ e = e’› unfolding less_eq_energy_def

by (smt (z3) energy.case_eq_if energy.expand nle_le)
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next
fix g g’ e e’ eu eu’
assume monotonicity_assms:

‹ spectroscopy_moves g g’ 6= None›
‹ the (spectroscopy_moves g g’) e = Some eu›
‹ the (spectroscopy_moves g g’) e’ = Some eu’›
‹ e ≤ e’›

show ‹ eu ≤ eu’›
proof (cases g)

case (Attacker_Immediate p Q)
with monotonicity_assms
show ?thesis

by (cases g’, simp_all, (smt (z3) option.distinct(1) option.sel minus_component_leq)+)
next

case (Attacker_Branch p Q)
with monotonicity_assms
show ?thesis

by (cases g’, simp_all, (smt (z3) option.distinct(1) option.sel minus_component_leq)+)
next

case (Attacker_Conjunct p q)
hence ‹ ∃ p’ Q’. g’= (Attacker_Delayed p’ Q’)›

using monotonicity_assms(1,2)
by (induct, auto)

hence ‹ spectroscopy_moves g g’ = Some min1_6
∨ spectroscopy_moves g g’

= Some (λe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7)›
using monotonicity_assms(1,2) Attacker_Conjunct
by (smt (verit, ccfv_threshold) spectroscopy_moves.simps(7))

thus ?thesis
proof safe

assume ‹ spectroscopy_moves g g’ = Some min1_6›
thus ?thesis

using monotonicity_assms min.mono
unfolding leq_components
by (metis min_1_6_simps option.sel)

next
assume ‹ spectroscopy_moves g g’

= Some (λe. Option.bind (if ¬ E 0 0 0 0 0 0 0 1 ≤ e
then None else Some (e - E 0 0 0 0 0 0 0 1)) min1_7)›

thus ?thesis
unfolding min_1_7_subtr_simp
using monotonicity_assms
by (smt (z3) enat_diff_mono energy.sel leq_components min.mono

option.distinct(1) option.sel)
qed

next
case (Attacker_Delayed p Q)
hence ‹ (∃ p’ Q’. g’ = Attacker_Delayed p’ Q’) ∨

(∃ p’ Q’. g’ = Attacker_Immediate p’ Q’) ∨
(∃ p’ Q’. g’ = Defender_Conj p’ Q’) ∨
(∃ p’ Q’. g’ = Defender_Stable_Conj p’ Q’) ∨
(∃ p’ p’’ Q’ α Qα . g’ = Defender_Branch p’ α p’’ Q’ Qα)›
using monotonicity_assms(1)
by (induct, auto)

thus ?thesis
proof (safe)

fix p’ Q’
assume ‹ g’ = Attacker_Delayed p’ Q’›
thus ‹ eu ≤ eu’›

using Attacker_Delayed monotonicity_assms local.procrastination
by (metis option.sel)
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next
fix p’ Q’
assume ‹ g’ = Attacker_Immediate p’ Q’›
hence ‹ spectroscopy_moves g g’ = (subtract 1 0 0 0 0 0 0 0)›

using Attacker_Delayed monotonicity_assms local.observation
by (clarify, presburger)

thus ‹ eu ≤ eu’›
by (smt (verit, best) mono_subtract monotonicity_assms option.distinct(1) option.sel)

next
fix p’ Q’
assume ‹ g’ = Defender_Conj p’ Q’›
thus ‹ eu ≤ eu’›

using Attacker_Delayed monotonicity_assms local.late_inst_conj
by (metis option.sel)

next
fix p’ Q’
assume ‹ g’ = Defender_Stable_Conj p’ Q’›
thus ‹ eu ≤ eu’›

using Attacker_Delayed monotonicity_assms local.late_stbl_conj
by (metis (no_types, lifting) option.sel)

next
fix p’ p’’ Q’ α Qα
assume ‹ g’ = Defender_Branch p’ α p’’ Q’ Qα›
thus ‹ eu ≤ eu’›

using Attacker_Delayed monotonicity_assms local.br_conj
by (metis (no_types, lifting) option.sel)

qed
next

case (Defender_Branch p a p’ Q’ Qa)
with monotonicity_assms show ?thesis

by (cases g’, auto simp del: leq_components, unfold min_1_6_subtr_simp)
(smt (z3) enat_diff_mono mono_subtract option.discI energy.sel

leq_components min.mono option.distinct(1) option.inject)+
next

case (Defender_Conj p Q)
with monotonicity_assms show ?thesis

by (cases g’, simp_all del: leq_components)
(smt (verit, ccfv_SIG) mono_subtract option.discI option.sel)

next
case (Defender_Stable_Conj x71 x72)
with monotonicity_assms show ?thesis

by (cases g’, simp_all del: leq_components)
(smt (verit, ccfv_SIG) mono_subtract option.discI option.sel)+

qed
next

fix g g’ e e’
assume defender_win_min_assms:

‹ e ≤ e’›
‹ spectroscopy_moves g g’ 6= None›
‹ the (spectroscopy_moves g g’) e’ = None›

thus
‹ the (spectroscopy_moves g g’) e = None›

proof (cases g)
case (Attacker_Immediate p Q)
with defender_win_min_assms show ?thesis

by (cases g’, auto simp del: leq_components)
(smt (verit, best) option.distinct(1) option.inject order.trans)+

next
case (Attacker_Branch p Q)
with defender_win_min_assms show ?thesis

by (cases g’, auto)
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(smt (verit, best) option.distinct(1) option.inject order.trans)+
next

case (Attacker_Conjunct p q)
hence ‹ ∃ p’ Q’. g’= (Attacker_Delayed p’ Q’)›

using defender_win_min_assms(2) by (induct, auto)
hence ‹ spectroscopy_moves g g’ = Some min1_6
∨ spectroscopy_moves g g’ = Some (λe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7)›
using defender_win_min_assms(2) Attacker_Conjunct
by (smt (verit, ccfv_threshold) spectroscopy_moves.simps(7))

thus ?thesis
proof safe

assume ‹ spectroscopy_moves g g’ = Some min1_6›
thus ‹ the (spectroscopy_moves g g’) e = None›

using defender_win_min_assms min_1_6_some by fastforce
next

assume ‹ spectroscopy_moves g g’
= Some (λe. Option.bind (if ¬ E 0 0 0 0 0 0 0 1 ≤ e

then None else Some (e - E 0 0 0 0 0 0 0 1)) min1_7)›
thus ‹ the (spectroscopy_moves g g’) e = None›

using defender_win_min_assms(1,3) bind.bind_lunit dual_order.trans min_1_7_some
by (smt (verit, best) option.sel)

qed
next

case (Attacker_Delayed p Q)
hence ‹ (∃ p’ Q’. g’=(Attacker_Delayed p’ Q’)) ∨

(∃ p’ Q’. g’=(Attacker_Immediate p’ Q’)) ∨
(∃ p’ Q’. g’=(Defender_Conj p’ Q’)) ∨
(∃ p’ Q’. g’=(Defender_Stable_Conj p’ Q’)) ∨
(∃ p’ p’’ Q’ α Qα . g’= (Defender_Branch p’ α p’’ Q’ Qα))›
using defender_win_min_assms(2) by (induct, auto)

thus ?thesis
proof (safe)

fix p’ Q’
assume ‹ g’ = Attacker_Delayed p’ Q’›
hence False

using Attacker_Delayed defender_win_min_assms(2,3) local.procrastination
by (metis option.distinct(1) option.sel)

thus ‹ the (spectroscopy_moves g (Attacker_Delayed p’ Q’)) e = None› ..
next

fix p’ Q’
assume ‹ g’ = Attacker_Immediate p’ Q’›
moreover hence ‹ spectroscopy_moves g g’ = (subtract 1 0 0 0 0 0 0 0)›

using Attacker_Delayed defender_win_min_assms(2,3) local.observation
by (clarify, presburger)

moreover hence ‹¬E 1 0 0 0 0 0 0 0 ≤ e’›
using defender_win_min_assms by force

ultimately show ‹ the (spectroscopy_moves g (Attacker_Immediate p’ Q’)) e = None›
using defender_win_min_assms(1) by force

next
fix p’ Q’
assume ‹ g’ = Defender_Conj p’ Q’›
hence False

using Attacker_Delayed defender_win_min_assms(2,3) local.late_inst_conj
by (metis option.distinct(1) option.sel)

thus ‹ the (spectroscopy_moves g (Defender_Conj p’ Q’)) e = None› ..
next

fix p’ Q’
assume ‹ g’ = Defender_Stable_Conj p’ Q’›
hence False

using Attacker_Delayed defender_win_min_assms(2,3) local.late_stbl_conj
by (metis (no_types, lifting) option.distinct(1) option.sel)
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thus ‹ the (spectroscopy_moves g (Defender_Stable_Conj p’ Q’)) e = None› ..
next

fix p’ p’’ Q’ α Qα
assume ‹ g’ = Defender_Branch p’ α p’’ Q’ Qα›
hence False

using Attacker_Delayed defender_win_min_assms(2,3) local.br_conj
by (metis (no_types, lifting) option.distinct(1) option.sel)

thus ‹ the (spectroscopy_moves g (Defender_Branch p’ α p’’ Q’ Qα)) e = None› ..
qed

next
case (Defender_Branch p a p’ Q’ Qa)
hence ‹ (∃ q’∈Q’. g’ = Attacker_Conjunct p q’)
∨ (∃ Qa’. Qa 7→aS a Qa’ ∧ g’ = Attacker_Branch p’ Qa’)›
using defender_win_min_assms by (cases g’, auto) (metis not_None_eq)+

hence ‹ (spectroscopy_moves g g’) = (subtract 0 1 1 0 0 0 0 0) ∨
(spectroscopy_moves g g’) = Some (λe. Option.bind (subtract_fn 0 1 1 0 0 0 0 0 e) min1_6)›
using Defender_Branch option.collapse[OF defender_win_min_assms(2)]
by (cases g’, auto)

thus ?thesis
using defender_win_min_assms min_1_6_some
by (smt (verit, best) bind.bind_lunit option.distinct(1) dual_order.trans option.sel)

next
case (Defender_Conj p Q)
with defender_win_min_assms show ?thesis

by (cases g’, auto)
(smt (verit, best) option.distinct(1) option.inject order.trans)+

next
case (Defender_Stable_Conj x71 x72)
with defender_win_min_assms show ?thesis

by (cases g’, simp_all del: leq_components)
(smt (verit) dual_order.trans option.discI option.sel)+

qed
qed

abbreviation ‹ spectro_att_wins ≡ weak_spectroscopy_game.attacker_wins›

end — of lts_tau

end
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9 Correctness

Energy levels where the defender wins in the spectroscopy game and equivalences coincide in the
following sense: There exists a formula ϕ distinguishing a process p from a set of processes Q with ex-
pressiveness price of at most e if and only if e is in attacker’s winning budget of Attacker_Immediate
p Q.
The proof is split into two directions, closely following the structure of [3]. The forward direction
is given by the lemma distinction_implies_winning_budgets combined with the upwards closure
of winning budgets. To show the other direction, one can construct a (strategy) formula with an
appropriate price using the constructive proof of winning_budget_implies_strategy_formula.

9.1 Distinction Implies Winning Budgets
theory Distinction_Implies_Winning_Budgets

imports Spectroscopy_Game Expressiveness_Price
begin

context lts_tau
begin

We prove that if a formula distinguishes process p from a set of process Q, then the price of this
formula is in attacker’s winning budgets.
lemma distinction_implies_winning_budgets_empty_Q:

assumes
‹ distinguishes_from ϕ p {}›

shows
‹ spectro_att_wins (expressiveness_price ϕ) (Attacker_Immediate p {})›

using assms
proof -

have ‹ spectroscopy_moves (Defender_Conj p {}) p’ = None› for p’
by(rule spectroscopy_moves.elims, auto)

moreover have ‹ spectroscopy_defender (Defender_Conj p {})› by simp
ultimately have conj_win: ‹ spectro_att_wins (expressiveness_price ϕ) (Defender_Conj p {})›

by (simp add: weak_spectroscopy_game.attacker_wins.Defense)
from late_inst_conj[of p ‹ {}› p ‹ {}› ] have next_move0:

‹ spectroscopy_moves (Attacker_Delayed p {}) (Defender_Conj p {}) = id_up› by force
from delay[of p ‹ {}› p ‹ {}› ] have next_move1:

‹ spectroscopy_moves (Attacker_Immediate p {}) (Attacker_Delayed p {}) = id_up› by force
moreover have ‹ weak_spectroscopy_game.attacker (Attacker_Immediate p {})› by simp
ultimately show ?thesis

using weak_spectroscopy_game.attacker_wins.Attack next_move0 next_move1
by (metis conj_win option.distinct(1) option.sel spectroscopy_defender.simps(4))

qed

lemma distinction_implies_winning_budgets:
assumes

‹ distinguishes_from ϕ p Q›
shows

‹ spectro_att_wins (expressiveness_price ϕ) (Attacker_Immediate p Q)›
proof -

have
‹ (∀ Q p. Q 6= {} −→ distinguishes_from ϕ p Q

−→ spectro_att_wins (expressiveness_price ϕ)(Attacker_Immediate p Q))
∧

((∀ p Q. Q 6= {} −→ hml_srbb_inner.distinguishes_from χ p Q −→ Q →→S Q
−→ spectro_att_wins (expr_pr_inner χ) (Attacker_Delayed p Q))

∧ (∀Ψ_I Ψ p Q. χ = Conj Ψ_I Ψ −→
Q 6= {} −→ hml_srbb_inner.distinguishes_from χ p Q
−→ spectro_att_wins (expr_pr_inner χ) (Defender_Conj p Q))
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∧ (∀Ψ_I Ψ p Q. χ = StableConj Ψ_I Ψ −→
Q 6= {} −→ hml_srbb_inner.distinguishes_from χ p Q −→ (∀ q ∈ Q. @ q’. q 7→ τ q’)
−→ spectro_att_wins (expr_pr_inner χ) (Defender_Stable_Conj p Q))

∧ (∀Ψ_I Ψ α ϕ p Q p’ Q_α. χ = BranchConj α ϕ Ψ_I Ψ −→
hml_srbb_inner.distinguishes_from χ p Q −→ p 7→a α p’ −→ p’ |=SRBB ϕ −→
Q_α = Q - hml_srbb_inner.model_set (Obs α ϕ)
−→ spectro_att_wins (expr_pr_inner χ) (Defender_Branch p α p’ (Q - Q_α) Q_α)))

∧
(∀ p q. hml_srbb_conj.distinguishes ψ p q

−→ spectro_att_wins (expr_pr_conjunct ψ) (Attacker_Conjunct p q))›
for ϕ χ ψ

proof -
fix ϕ χ ψ
show ‹ (∀ Q p. Q 6= {} −→ distinguishes_from ϕ p Q

−→ spectro_att_wins (expressiveness_price ϕ) (Attacker_Immediate p Q))
∧

((∀ p Q. Q 6= {} −→ hml_srbb_inner.distinguishes_from χ p Q −→ Q →→S Q
−→ spectro_att_wins (expr_pr_inner χ) (Attacker_Delayed p Q))

∧ (∀Ψ_I Ψ p Q. χ = Conj Ψ_I Ψ −→
Q 6= {} −→ hml_srbb_inner.distinguishes_from χ p Q
−→ spectro_att_wins (expr_pr_inner χ) (Defender_Conj p Q))

∧ (∀Ψ_I Ψ p Q. χ = StableConj Ψ_I Ψ −→
Q 6= {} −→ hml_srbb_inner.distinguishes_from χ p Q −→ (∀ q ∈ Q. @ q’. q 7→ τ q’)
−→ spectro_att_wins (expr_pr_inner χ) (Defender_Stable_Conj p Q))

∧ (∀Ψ_I Ψ α ϕ p Q p’ Q_α. χ = BranchConj α ϕ Ψ_I Ψ −→
hml_srbb_inner.distinguishes_from χ p Q −→ p 7→a α p’ −→ p’ |=SRBB ϕ −→
Q_α = Q - hml_srbb_inner.model_set (Obs α ϕ)
−→ spectro_att_wins (expr_pr_inner χ) (Defender_Branch p α p’ (Q - Q_α) Q_α)))

∧
(∀ p q. hml_srbb_conj.distinguishes ψ p q

−→ spectro_att_wins (expr_pr_conjunct ψ) (Attacker_Conjunct p q))›
proof (induct rule: hml_srbb_hml_srbb_inner_hml_srbb_conjunct.induct[of _ _ _ ϕ χ ψ])

case TT
then show ?case
proof (clarify)

fix Q p
assume ‹ Q 6= {}› ‹ distinguishes_from TT p Q›
hence ‹ ∃ q. q ∈ Q›

by blast
then obtain q where ‹ q ∈ Q› by auto
hence ‹ distinguishes TT p q›

using ‹ distinguishes_from TT p Q› distinguishes_from_def by auto
with verum_never_distinguishes
show ‹ spectro_att_wins (expressiveness_price TT) (Attacker_Immediate p Q)›

by blast
qed

next
case (Internal χ)
show ?case
proof (clarify)

fix Q p
assume ‹ Q 6= {}› ‹ distinguishes_from (Internal χ) p Q›
then have

‹ ∃ p’. p →→ p’ ∧ hml_srbb_inner_models p’ χ›
‹ ∀ q ∈ Q. (@ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ)›
by auto

hence ‹ ∀ q ∈ Q. (∀ q’. q →→ q’ −→ ¬(hml_srbb_inner_models q’ χ))› by auto
then have ‹ ∀ q ∈ Q. (∀ q’∈Q’. q →→ q’ −→ ¬(hml_srbb_inner_models q’ χ))›

for Q’ by blast
then have ‹ Q →→S Q’ −→ (∀ q’ ∈ Q’. ¬(hml_srbb_inner_models q’ χ))›

for Q’ using ‹ Q 6= {}› by blast
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define Qτ where ‹ Qτ ≡ silent_reachable_set Q›
with ‹

∧
Q’. Q →→S Q’ −→ (∀ q’ ∈ Q’. ¬(hml_srbb_inner_models q’ χ))›

have ‹ ∀ q’ ∈ Qτ. ¬(hml_srbb_inner_models q’ χ)›
using sreachable_set_is_sreachable by presburger

have ‹ Qτ →→S Qτ› unfolding Qτ_def
by (metis silent_reachable_trans sreachable_set_is_sreachable

silent_reachable.intros(1))
from ‹ ∃ p’. p →→ p’ ∧ (hml_srbb_inner_models p’ χ)›
obtain p’ where ‹ p →→ p’› ‹ hml_srbb_inner_models p’ χ› by auto
from this(1) have ‹ p →→L p’› using silent_reachable_impl_loopless by blast
have ‹ Qτ 6= {}›

using silent_reachable.intros(1) sreachable_set_is_sreachable Qτ_def ‹ Q 6= {}›
by fastforce

from ‹ hml_srbb_inner_models p’ χ› ‹ ∀ q’ ∈ Qτ. ¬(hml_srbb_inner_models q’ χ)›
have ‹ hml_srbb_inner.distinguishes_from χ p’ Qτ› by simp

with ‹ Qτ →→S Qτ› ‹ Qτ 6= {}› Internal
have ‹ spectro_att_wins (expr_pr_inner χ) (Attacker_Delayed p’ Qτ)›

by blast
moreover have ‹ expr_pr_inner χ = expressiveness_price (Internal χ)› by simp
ultimately have ‹ spectro_att_wins (expressiveness_price (Internal χ))

(Attacker_Delayed p’ Qτ)› by simp
hence ‹ spectro_att_wins (expressiveness_price (Internal χ)) (Attacker_Delayed p Qτ)›
proof(induct rule: silent_reachable_loopless.induct[of ‹ p› ‹ p’› , OF ‹ p →→L p’› ])

case (1 p)
thus ?case by simp

next
case (2 p p’ p’’)
hence ‹ spectro_att_wins (expressiveness_price (Internal χ))

(Attacker_Delayed p’ Qτ)›
by simp

moreover have ‹ spectroscopy_moves (Attacker_Delayed p Qτ) (Attacker_Delayed p’ Qτ)
= id_up› using spectroscopy_moves.simps(2) ‹ p 6= p’› ‹ p 7→τ p’› by auto

moreover have ‹ weak_spectroscopy_game.attacker (Attacker_Delayed p Qτ)› by simp
ultimately show ?case

using weak_spectroscopy_game.attacker_wins_Ga_with_id_step by auto
qed
have ‹ Q →→S Qτ›

using Qτ_def sreachable_set_is_sreachable by simp
hence ‹ spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p Qτ) = id_up›

using spectroscopy_moves.simps(1) by simp
with ‹ spectro_att_wins (expressiveness_price (Internal χ)) (Attacker_Delayed p Qτ)›
show ‹ spectro_att_wins (expressiveness_price (Internal χ)) (Attacker_Immediate p Q)›

using weak_spectroscopy_game.attacker_wins_Ga_with_id_step
by (metis option.discI option.sel spectroscopy_defender.simps(1))

qed
next

case (ImmConj I ψs)
show ?case
proof (clarify)

fix Q p
assume ‹ Q 6= {}› and ‹ distinguishes_from (ImmConj I ψs) p Q›
from this(2) have ‹ ∀ q∈Q. p |=SRBB ImmConj I ψs ∧ ¬ q |=SRBB ImmConj I ψs›

unfolding distinguishes_from_def distinguishes_def by blast
hence ‹ ∀ q∈Q. ∃ i∈I. hml_srbb_conjunct_models p (ψs i)

∧ ¬hml_srbb_conjunct_models q (ψs i)›
by simp

hence ‹ ∀ q∈Q. ∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q›
using hml_srbb_conj.distinguishes_def by simp

hence ‹ ∀ q∈Q. ∃ i∈I. ((ψs i) ∈ range ψs)
∧ hml_srbb_conj.distinguishes (ψs i) p q› by blast

hence ‹ ∀ q∈Q. ∃ i∈I.
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spectro_att_wins (expr_pr_conjunct (ψs i)) (Attacker_Conjunct p q)›
using ImmConj by blast

hence a_clause_wina:
‹ ∀ q∈Q. ∃ i∈I.

spectro_att_wins (expressiveness_price (ImmConj I ψs) - E 0 0 1 0 1 0 0 0)
(Attacker_Conjunct p q)›

using expressiveness_price_ImmConj_geq_parts
weak_spectroscopy_game.win_a_upwards_closure by fast

from this ‹ Q 6= {}› have ‹ I 6= {}› by blast
hence subtracts:

‹ subtract_fn 0 0 1 0 1 0 0 0 (expressiveness_price (ImmConj I ψs))
= Some (expressiveness_price (ImmConj I ψs) - E 0 0 1 0 1 0 0 0)›

‹ subtract_fn 0 0 1 0 0 0 0 0 (expressiveness_price (ImmConj I ψs)
- E 0 0 0 0 1 0 0 0)

= Some (expressiveness_price (ImmConj I ψs) - E 0 0 1 0 1 0 0 0)›
by (simp add: ‹ I 6= {}› )+

have def_conj: ‹ spectroscopy_defender (Defender_Conj p Q)› by simp
have ‹ spectroscopy_moves (Defender_Conj p Q) N 6= None

=⇒ N = Attacker_Conjunct (attacker_state N) (defender_state N)› for N
by (metis spectroscopy_moves.simps(29,30,33,34,58,62)

spectroscopy_position.exhaust_sel)
hence move_kind: ‹ spectroscopy_moves (Defender_Conj p Q) N 6= None

=⇒ ∃ q∈Q. N = Attacker_Conjunct p q› for N
using conj_answer by metis

hence update: ‹
∧

g’. spectroscopy_moves (Defender_Conj p Q) g’ 6= None =⇒
weak_spectroscopy_game.weight (Defender_Conj p Q) g’ = subtract_fn 0 0 1 0 0 0 0 0›
by fastforce

hence move_wina: ‹
∧

g’. spectroscopy_moves (Defender_Conj p Q) g’ 6= None
=⇒ (subtract_fn 0 0 1 0 0 0 0 0) (expressiveness_price (ImmConj I ψs)

- E 0 0 0 0 1 0 0 0)
= Some (expressiveness_price (ImmConj I ψs) - E 0 0 1 0 1 0 0 0)

∧ spectro_att_wins (expressiveness_price (ImmConj I ψs) - E 0 0 1 0 1 0 0 0) g’›
using move_kind a_clause_wina subtracts by blast

from weak_spectroscopy_game.attacker_wins.Defense[OF def_conj] update move_wina have
def_conj_wina:

‹ spectro_att_wins (expressiveness_price (ImmConj I ψs) - E 0 0 0 0 1 0 0 0)
(Defender_Conj p Q)›

by (metis (lifting))
have imm_to_conj:

‹ spectroscopy_moves (Attacker_Immediate p Q) (Defender_Conj p Q) 6= None›
by (simp add: ‹ Q 6= {}› )

have imm_to_conj_wgt:
‹ weak_spectroscopy_game.weight (Attacker_Immediate p Q) (Defender_Conj p Q)

(expressiveness_price (ImmConj I ψs))
= Some (expressiveness_price (ImmConj I ψs) - E 0 0 0 0 1 0 0 0)›
using ‹ Q 6= {}› leq_components subtracts(1) by force

from weak_spectroscopy_game.Attack[OF _ imm_to_conj imm_to_conj_wgt] def_conj_wina
show

‹ spectro_att_wins (expressiveness_price (ImmConj I ψs)) (Attacker_Immediate p Q)›
by simp

qed
next

case (Obs α ϕ)
have

‹ ∀ p Q. Q 6= {} −→ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs α ϕ) p Q
−→ Q →→S Q −→ spectro_att_wins (expr_pr_inner (hml_srbb_inner.Obs α ϕ))

(Attacker_Delayed p Q)›
proof(clarify)

fix p Q
assume

‹ Q 6= {}›
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‹ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs α ϕ) p Q›
‹ ∀ p∈Q. ∀ q. p →→ q −→ q ∈ Q›

have ‹ ∃ p’ Q’. p 7→a α p’ ∧ Q 7→aS α Q’
∧ spectro_att_wins (expressiveness_price ϕ) (Attacker_Immediate p’ Q’)›

proof(cases ‹α = τ› )
case True
with ‹ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs α ϕ) p Q›
have dist_unfold: ‹ ((∃ p’. p 7→τ p’ ∧ p’ |=SRBB ϕ) ∨ p |=SRBB ϕ)› by simp
then obtain p’ where ‹ p’ |=SRBB ϕ› ‹ p 7→a α p’›

unfolding True by blast
from ‹ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs α ϕ) p Q› have

‹ ∀ q∈Q. (¬ q |=SRBB ϕ) ∧ (@ q’. q 7→τ q’ ∧ q’ |=SRBB ϕ)›
using True by auto

hence ‹ ∀ q∈Q. ¬q |=SRBB ϕ›
using ‹ ∀ p∈Q. ∀ q. p →→ q −→ q ∈ Q› by fastforce

hence ‹ distinguishes_from ϕ p’ Q›
using ‹ p’ |=SRBB ϕ› by auto

with Obs have ‹ spectro_att_wins (expressiveness_price ϕ) (Attacker_Immediate p’ Q)›
using ‹ Q 6= {}› by blast

moreover have ‹ Q 7→aS α Q›
unfolding True
using ‹ ∀ p∈Q. ∀ q. p →→ q −→ q ∈ Q› silent_reachable_append_τ

silent_reachable.intros(1) by blast
ultimately show ?thesis using ‹ p 7→a α p’› by blast

next
case False
with ‹ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs α ϕ) p Q›
obtain p’’ where ‹ (p 7→α p’’) ∧ (p’’ |=SRBB ϕ)› by auto
let ?Q’ = ‹ step_set Q α›
from ‹ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Obs α ϕ) p Q›
have ‹ ∀ q∈?Q’. ¬ q |=SRBB ϕ›

using ‹ Q 6= {}› and step_set_is_step_set
by force

from ‹ ∀ q∈step_set Q α. ¬ q |=SRBB ϕ› ‹ p 7→α p’’ ∧ p’’ |=SRBB ϕ›
have ‹ distinguishes_from ϕ p’’ ?Q’› by simp
hence ‹ spectro_att_wins (expressiveness_price ϕ) (Attacker_Immediate p’’ ?Q’)›

by (metis Obs distinction_implies_winning_budgets_empty_Q)
moreover have ‹ p 7→α p’’› using ‹ p 7→α p’’ ∧ p’’ |=SRBB ϕ› by simp
moreover have ‹ Q 7→aS α ?Q’› by (simp add: False lts.step_set_is_step_set)
ultimately show ?thesis by blast

qed
then obtain p’ Q’ where p’_Q’: ‹ p 7→a α p’› ‹ Q 7→aS α Q’› and

wina: ‹ spectro_att_wins (expressiveness_price ϕ) (Attacker_Immediate p’ Q’)› by blast
have attacker: ‹ weak_spectroscopy_game.attacker (Attacker_Delayed p Q)› by simp
have

‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’) =
(if ∃ a. p 7→a a p’ ∧ Q 7→aS a Q’ then subtract 1 0 0 0 0 0 0 0 else None)›

for p Q p’ Q’ by simp
from this[of p Q p’ Q’] have

‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’) =
subtract 1 0 0 0 0 0 0 0› using p’_Q’ by auto

with expr_obs_phi[of α ϕ] show
‹ spectro_att_wins (expr_pr_inner (hml_srbb_inner.Obs α ϕ)) (Attacker_Delayed p Q)›
using weak_spectroscopy_game.Attack[OF attacker _ _ wina]
by (smt (verit, best) option.sel option.simps(3))

qed
then show ?case by fastforce

next
case (Conj I ψs)
have main_case:

‹ ∀Ψ_I Ψ p Q. hml_srbb_inner.Conj I ψs = hml_srbb_inner.Conj Ψ_I Ψ −→
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Q 6= {} −→ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Conj I ψs) p Q
−→ spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I ψs)) (Defender_Conj p Q)›

proof clarify
fix p Q
assume case_assms:

‹ Q 6= {}›
‹ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Conj I ψs) p Q›

hence distinctions: ‹ ∀ q∈Q. ∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q›
by auto

hence inductive_wins: ‹ ∀ q∈Q. ∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q
∧ spectro_att_wins (expr_pr_conjunct (ψs i)) (Attacker_Conjunct p q)›

using Conj by blast
define ψqs where

‹ψqs ≡ λq. (SOME ψ. ∃ i∈I. ψ = ψs i ∧ hml_srbb_conj.distinguishes ψ p q
∧ spectro_att_wins (expr_pr_conjunct ψ) (Attacker_Conjunct p q))›

with inductive_wins someI have ψqs_spec:
‹ ∀ q∈Q. ∃ i∈I. ψqs q = ψs i ∧ hml_srbb_conj.distinguishes (ψqs q ) p q
∧ spectro_att_wins (expr_pr_conjunct (ψqs q)) (Attacker_Conjunct p q)›

by (smt (verit))
have conjuncts_present:

‹ ∀ q∈Q. expr_pr_conjunct (ψqs q) ∈ expr_pr_conjunct ‘ (ψqs ‘ Q)›
using ‹ Q 6= {}› by blast

define e’ where ‹ e’ = E
(Sup (modal_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (br_conj_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (conj_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (st_conj_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (imm_conj_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (pos_conjuncts ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (neg_conjuncts ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (neg_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))›

from conjuncts_present have ‹ ∀ q∈Q. (expr_pr_conjunct (ψqs q)) ≤ e’›
unfolding e’_def
by (metis SUP_upper energy.sel leq_components)

with ψqs_spec weak_spectroscopy_game.win_a_upwards_closure
have clause_win: ‹ ∀ q∈Q. spectro_att_wins e’ (Attacker_Conjunct p q)› by blast

define eu’ where ‹ eu’ = E
(Sup (modal_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (br_conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (st_conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (imm_conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (pos_conjuncts ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (neg_conjuncts ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (neg_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))›

have subset_form: ‹ψqs ‘ Q ⊆ ψs ‘ I›
using ψqs_spec by fastforce

hence ‹ e’ ≤ eu’› unfolding e’_def eu’_def leq_components
by (simp add: Sup_subset_mono image_mono)

define e where ‹ e = E
(modal_depth e’)
(br_conj_depth e’)
(1 + conj_depth e’)
(st_conj_depth e’)
(imm_conj_depth e’)
(pos_conjuncts e’)
(neg_conjuncts e’)
(neg_depth e’)›

have ‹ e’ = e - (E 0 0 1 0 0 0 0 0)› unfolding e_def e’_def by simp
hence ‹ Some e’ = (subtract_fn 0 0 1 0 0 0 0 0) e›

by (auto, smt (verit) add_increasing2 e_def energy.sel
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energy_leq_cases i0_lb le_numeral_extra(4))
have expr_lower: ‹ (E 0 0 1 0 0 0 0 0) ≤ expr_pr_inner (Conj I ψs)›

using case_assms(1) subset_form by auto
have eu’_comp: ‹ eu’ = (expr_pr_inner (Conj I ψs)) - (E 0 0 1 0 0 0 0 0)›

unfolding eu’_def
by (auto simp add: bot_enat_def image_image)

with expr_lower have eu’_characterization:
‹ Some eu’ = (subtract_fn 0 0 1 0 0 0 0 0) (expr_pr_inner (Conj I ψs))›

by presburger
have ‹ ∀ g’. spectroscopy_moves (Defender_Conj p Q) g’ 6= None
−→ (∃ q∈Q. (Attacker_Conjunct p q) = g’)

∧ spectroscopy_moves (Defender_Conj p Q) g’ = Some (subtract_fn 0 0 1 0 0 0 0 0)›
proof clarify

fix g’ upd
assume upd_def: ‹ spectroscopy_moves (Defender_Conj p Q) g’ = Some upd›
hence ‹

∧
px q. g’ = Attacker_Conjunct px q

=⇒ p = px ∧ q ∈ Q ∧ upd = (subtract_fn 0 0 1 0 0 0 0 0)›
by (metis (mono_tags, lifting) local.conj_answer option.sel option.simps(3))

with upd_def show
‹ (∃ q∈Q. Attacker_Conjunct p q = g’)
∧ spectroscopy_moves (Defender_Conj p Q) g’ = Some (subtract_fn 0 0 1 0 0 0 0 0)›
by (cases g’, auto)

qed
hence ‹ ∀ g’. spectroscopy_moves (Defender_Conj p Q) g’ 6= None
−→ (∃ e’. (the (spectroscopy_moves (Defender_Conj p Q) g’)) e = Some e’

∧ spectro_att_wins e’ g’)›
unfolding e_def
using clause_win ‹ Some e’ = (subtract_fn 0 0 1 0 0 0 0 0) e› e_def by force

hence ‹ spectro_att_wins e (Defender_Conj p Q)›
unfolding e_def using weak_spectroscopy_game.attacker_wins.Defense
by auto

moreover have ‹ e ≤ expr_pr_inner (Conj I ψs)›
using ‹ e’ ≤ eu’› eu’_characterization ‹ Some e’ = (subtract_fn 0 0 1 0 0 0 0 0) e›

expr_lower case_assms(1) subset_form e_def
by (smt (verit, ccfv_threshold) eu’_comp add_diff_cancel_enat

add_mono_thms_linordered_semiring(1) enat.simps(3) enat_defs(2) energy.sel
expr_pr_inner.simps idiff_0_right inst_conj_depth_inner.simps(2) le_numeral_extra(4)
leq_components minus_energy_def not_one_le_zero)

ultimately show
‹ spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I ψs)) (Defender_Conj p Q)›
using weak_spectroscopy_game.win_a_upwards_closure by blast

qed
moreover have

‹ ∀ p Q. Q 6= {} −→ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Conj I ψs) p Q
−→ Q →→S Q −→ spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I ψs))

(Attacker_Delayed p Q)›
proof clarify

fix p Q
assume

‹ Q 6= {}›
‹ hml_srbb_inner.distinguishes_from (hml_srbb_inner.Conj I ψs) p Q›

hence
‹ spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I ψs)) (Defender_Conj p Q)›
using main_case by blast

moreover have ‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p Q) = id_up›
by auto

ultimately show
‹ spectro_att_wins (expr_pr_inner (hml_srbb_inner.Conj I ψs))

(Attacker_Delayed p Q)›
by (metis weak_spectroscopy_game.attacker_wins_Ga_with_id_step option.discI

option.sel spectroscopy_defender.simps(4))
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qed
ultimately show ?case by fastforce

next
case (StableConj I ψs)
— The following proof is virtually the same as for Conj I ψs
have main_case: ‹ (∀Ψ_I Ψ p Q. StableConj I ψs = StableConj Ψ_I Ψ −→

Q 6= {} −→ hml_srbb_inner.distinguishes_from (StableConj I ψs) p Q −→
(∀ q∈Q. @ q’. q 7→τ q’)
−→ spectro_att_wins (expr_pr_inner (StableConj I ψs)) (Defender_Stable_Conj p Q))›

proof clarify
fix p Q
assume case_assms:

‹ Q 6= {}›
‹ hml_srbb_inner.distinguishes_from (StableConj I ψs) p Q›
‹ ∀ q∈Q. @ q’. q 7→τ q’›

hence distinctions: ‹ ∀ q∈Q. ∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q›
by (metis hml_srbb_conj.distinguishes_def hml_srbb_inner.distinguishes_from_def

hml_srbb_inner_models.simps(3))
hence inductive_wins: ‹ ∀ q∈Q. ∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q

∧ spectro_att_wins (expr_pr_conjunct (ψs i)) (Attacker_Conjunct p q)›
using StableConj by blast

define ψqs where
‹ψqs ≡ λq. (SOME ψ. ∃ i∈I. ψ = ψs i ∧ hml_srbb_conj.distinguishes ψ p q
∧ spectro_att_wins (expr_pr_conjunct ψ) (Attacker_Conjunct p q))›

with inductive_wins someI have ψqs_spec:
‹ ∀ q∈Q. ∃ i∈I. ψqs q = ψs i ∧ hml_srbb_conj.distinguishes (ψqs q ) p q
∧ spectro_att_wins (expr_pr_conjunct (ψqs q)) (Attacker_Conjunct p q)›

by (smt (verit))
have conjuncts_present:

‹ ∀ q∈Q. expr_pr_conjunct (ψqs q) ∈ expr_pr_conjunct ‘ (ψqs ‘ Q)›
using ‹ Q 6= {}› by blast

define e’ where ‹ e’ = E
(Sup (modal_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (br_conj_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (conj_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (st_conj_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (imm_conj_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (pos_conjuncts ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (neg_conjuncts ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))
(Sup (neg_depth ‘ (expr_pr_conjunct ‘ (ψqs ‘ Q))))›

from conjuncts_present have ‹ ∀ q∈Q. (expr_pr_conjunct (ψqs q)) ≤ e’› unfolding e’_def
by (smt (verit, best) SUP_upper energy.sel energy.simps(3) energy_leq_cases image_iff)

with ψqs_spec weak_spectroscopy_game.win_a_upwards_closure
have clause_win: ‹ ∀ q∈Q. spectro_att_wins e’ (Attacker_Conjunct p q)› by blast

define eu’ where ‹ eu’ = E
(Sup (modal_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (br_conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (st_conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (imm_conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (pos_conjuncts ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (neg_conjuncts ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (neg_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))›

have subset_form: ‹ψqs ‘ Q ⊆ ψs ‘ I›
using ψqs_spec by fastforce

hence ‹ e’ ≤ eu’› unfolding e’_def eu’_def
by (simp add: Sup_subset_mono image_mono)

define e where ‹ e = E
(modal_depth e’)
(br_conj_depth e’)
(conj_depth e’)
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(1 + st_conj_depth e’)
(imm_conj_depth e’)
(pos_conjuncts e’)
(neg_conjuncts e’)
(neg_depth e’)›

have ‹ e’ = e - (E 0 0 0 1 0 0 0 0)› unfolding e_def e’_def by auto
hence ‹ Some e’ = (subtract_fn 0 0 0 1 0 0 0 0) e›

by (metis e_def energy.sel energy_leq_cases i0_lb le_iff_add)
have expr_lower: ‹ (E 0 0 0 1 0 0 0 0) ≤ expr_pr_inner (StableConj I ψs)›

using case_assms(1) subset_form by force
have eu’_comp: ‹ eu’ = (expr_pr_inner (StableConj I ψs)) - (E 0 0 0 1 0 0 0 0)›

unfolding eu’_def using energy.sel
by (auto simp add: bot_enat_def, (metis (no_types, lifting) SUP_cong image_image)+)

with expr_lower have eu’_characterization:
‹ Some eu’ = (subtract_fn 0 0 0 1 0 0 0 0) (expr_pr_inner (StableConj I ψs))›

by presburger
have ‹ ∀ g’. spectroscopy_moves (Defender_Stable_Conj p Q) g’ 6= None
−→ (∃ q∈Q. (Attacker_Conjunct p q) = g’)

∧ spectroscopy_moves (Defender_Stable_Conj p Q) g’ = (subtract 0 0 0 1 0 0 0 0)›
proof clarify

fix g’ upd
assume upd_def: ‹ spectroscopy_moves (Defender_Stable_Conj p Q) g’ = Some upd›
hence ‹

∧
px q. g’ = Attacker_Conjunct px q

=⇒ p = px ∧ q ∈ Q ∧ upd = (subtract_fn 0 0 0 1 0 0 0 0)›
by (metis (no_types, lifting) local.conj_s_answer option.discI option.inject)

with upd_def case_assms(1) show
‹ (∃ q∈Q. Attacker_Conjunct p q = g’)
∧ spectroscopy_moves (Defender_Stable_Conj p Q) g’ = (subtract 0 0 0 1 0 0 0 0)›

by (cases g’, auto)
qed
hence ‹ ∀ g’. spectroscopy_moves (Defender_Stable_Conj p Q) g’ 6= None
−→ (∃ e’. (the (spectroscopy_moves (Defender_Stable_Conj p Q) g’)) e = Some e’

∧ spectro_att_wins e’ g’)›
unfolding e_def
using clause_win ‹ Some e’ = (subtract_fn 0 0 0 1 0 0 0 0) e› e_def by force

hence ‹ spectro_att_wins e (Defender_Stable_Conj p Q)›
unfolding e_def
by (auto simp add: weak_spectroscopy_game.attacker_wins.Defense)

moreover have ‹ e ≤ expr_pr_inner (StableConj I ψs)›
using ‹ e’ ≤ eu’› eu’_characterization expr_lower case_assms(1) subset_form
unfolding e_def eu’_comp minus_energy_def leq_components
by (metis add_diff_assoc_enat add_diff_cancel_enat add_left_mono enat.simps(3)

enat_defs(2) energy.sel idiff_0_right)
ultimately show

‹ spectro_att_wins (expr_pr_inner (StableConj I ψs)) (Defender_Stable_Conj p Q)›
using weak_spectroscopy_game.win_a_upwards_closure by blast

qed
moreover have ‹ (∀ p Q. Q 6= {}
−→ hml_srbb_inner.distinguishes_from (StableConj I ψs) p Q −→ Q →→S Q
−→ spectro_att_wins (expr_pr_inner (StableConj I ψs)) (Attacker_Delayed p Q))›

proof clarify
— This is where things are more complicated than in the Conj-case. (We have to differentiate

situations where the stability requirement finishes the distinction.)
fix p Q
assume case_assms:

‹ Q 6= {}›
‹ hml_srbb_inner.distinguishes_from (StableConj I ψs) p Q›
‹ ∀ q’∈Q. ∃ q∈Q. q →→ q’›
‹ ∀ q∈Q. ∀ q’. q →→ q’ −→ q’ ∈ Q›

define Q’ where ‹ Q’ = { q ∈ Q. (@ q’. q 7→τ q’)}›
with case_assms(2) have Q’_spec:
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‹ hml_srbb_inner.distinguishes_from (StableConj I ψs) p Q’› ‹ @ p’’. p 7→τ p’’›
unfolding hml_srbb_inner.distinguishes_from_def by auto

hence move:
‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p Q’) = id_up›

unfolding Q’_def by auto
show ‹ spectro_att_wins (expr_pr_inner (StableConj I ψs)) (Attacker_Delayed p Q)›
proof (cases ‹ Q’ = {}› )

case True
hence

‹ spectroscopy_moves (Defender_Stable_Conj p Q’) (Defender_Conj p {})
= (subtract 0 0 0 1 0 0 0 0)› by auto

moreover have
‹ ∀ g’. spectroscopy_moves (Defender_Stable_Conj p Q’) g’ 6= None
−→ g’ = (Defender_Conj p {})›

proof clarify
fix g’ u
assume

‹ spectroscopy_moves (Defender_Stable_Conj p Q’) g’ = Some u›
with True show ‹ g’ = Defender_Conj p {}›

by (induct g’, auto, metis option.discI, metis empty_iff option.discI)
qed
ultimately have win_transfer:

‹ ∀ e. E 0 0 0 1 0 0 0 0 ≤ e
∧ spectro_att_wins (e - E 0 0 0 1 0 0 0 0) (Defender_Conj p {})
−→ spectro_att_wins e (Defender_Stable_Conj p Q’)›

using weak_spectroscopy_game.attacker_wins.Defense
by (smt (verit, ccfv_SIG) option.sel spectroscopy_defender.simps(7))

have ‹ ∀ g’. spectroscopy_moves (Defender_Conj p {}) g’ = None›
proof

fix g’
show ‹ spectroscopy_moves (Defender_Conj p {}) g’ = None› by (induct g’, auto)

qed
hence ‹ ∀ e. spectro_att_wins e (Defender_Conj p {})›

using weak_spectroscopy_game.attacker_wins.Defense by fastforce
moreover have

‹ ∀ e. (subtract_fn 0 0 0 1 0 0 0 0) e 6= None −→ e ≥ (E 0 0 0 1 0 0 0 0)›
using minus_energy_def by presburger

ultimately have ‹ ∀ e. e ≥ (E 0 0 0 1 0 0 0 0)
−→ spectro_att_wins e (Defender_Stable_Conj p Q’)›
using win_transfer by presburger

moreover have ‹ expr_pr_inner (StableConj I ψs) ≥ (E 0 0 0 1 0 0 0 0)›
by auto

ultimately show ?thesis
by (metis move weak_spectroscopy_game.attacker_wins_Ga_with_id_step option.discI

option.sel spectroscopy_defender.simps(4))
next

case False
with move show ?thesis

using main_case Q’_spec weak_spectroscopy_game.attacker_wins_Ga_with_id_step
unfolding Q’_def
by (metis (mono_tags, lifting) mem_Collect_eq option.distinct(1) option.sel

spectroscopy_defender.simps(4))
qed

qed
ultimately show ?case by blast

next
case (BranchConj α ϕ I ψs)
have main_case:

‹ ∀ p Q p’ Q_α.
hml_srbb_inner.distinguishes_from (BranchConj α ϕ I ψs) p Q −→ p 7→a α p’
−→ p’ |=SRBB ϕ −→ Q_α = Q - hml_srbb_inner.model_set (Obs α ϕ)
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−→ spectro_att_wins (expr_pr_inner (BranchConj α ϕ I ψs))
(Defender_Branch p α p’ (Q - Q_α) Q_α)›

proof ((rule allI)+, (rule impI)+)
fix p Q p’ Q_α
assume case_assms:

‹ hml_srbb_inner.distinguishes_from (BranchConj α ϕ I ψs) p Q›
‹ p 7→a α p’›
‹ p’ |=SRBB ϕ›
‹ Q_α = Q - hml_srbb_inner.model_set (Obs α ϕ)›

from case_assms(1) have distinctions:
‹ ∀ q∈(Q ∩ hml_srbb_inner.model_set (Obs α ϕ)).
∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q›

using srbb_dist_branch_conjunction_implies_dist_conjunct_or_branch
hml_srbb_inner.distinction_unlifting unfolding hml_srbb_inner.distinguishes_def

by (metis Int_Collect)
hence inductive_wins: ‹ ∀ q∈(Q ∩ hml_srbb_inner.model_set (Obs α ϕ)).
∃ i∈I. hml_srbb_conj.distinguishes (ψs i) p q
∧ spectro_att_wins (expr_pr_conjunct (ψs i)) (Attacker_Conjunct p q)›

using BranchConj by blast
define ψqs where

‹ψqs ≡ λq. (SOME ψ. ∃ i∈I. ψ = ψs i ∧ hml_srbb_conj.distinguishes ψ p q
∧ spectro_att_wins (expr_pr_conjunct ψ) (Attacker_Conjunct p q))›

with inductive_wins someI have ψqs_spec:
‹ ∀ q∈(Q ∩ hml_srbb_inner.model_set (Obs α ϕ)).
∃ i∈I. ψqs q = ψs i ∧ hml_srbb_conj.distinguishes (ψqs q ) p q
∧ spectro_att_wins (expr_pr_conjunct (ψqs q)) (Attacker_Conjunct p q)›

by (smt (verit))
have conjuncts_present:

‹ ∀ q∈(Q ∩ hml_srbb_inner.model_set (Obs α ϕ)). expr_pr_conjunct (ψqs q)
∈ expr_pr_conjunct ‘ (ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ)))›

by blast
define e’0 where ‹ e’0 = E

(Sup (modal_depth ‘ (expr_pr_conjunct ‘
(ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ))))))

(Sup (br_conj_depth ‘ (expr_pr_conjunct ‘
(ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ))))))

(Sup (conj_depth ‘ (expr_pr_conjunct ‘
(ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ))))))

(Sup (st_conj_depth ‘ (expr_pr_conjunct ‘
(ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ))))))

(Sup (imm_conj_depth ‘ (expr_pr_conjunct ‘
(ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ))))))

(Sup (pos_conjuncts ‘ (expr_pr_conjunct ‘
(ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ))))))

(Sup (neg_conjuncts ‘ (expr_pr_conjunct ‘
(ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ))))))

(Sup (neg_depth ‘ (expr_pr_conjunct ‘
(ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ))))))›

from conjuncts_present have branch_answer_bound:
‹ ∀ q ∈ Q ∩ hml_srbb_inner.model_set (Obs α ϕ). expr_pr_conjunct (ψqs q) ≤ e’0›

using e’0_def SUP_upper energy.sel energy.simps(3) energy_leq_cases image_iff
by (smt (z3))

with ψqs_spec weak_spectroscopy_game.win_a_upwards_closure have
conj_wins: ‹ ∀ q∈(Q ∩ hml_srbb_inner.model_set (Obs α ϕ)).

spectro_att_wins e’0 (Attacker_Conjunct p q)› by blast
define eu’0 where ‹ eu’0 = E

(Sup (modal_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (br_conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (st_conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (imm_conj_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
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(Sup (pos_conjuncts ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (neg_conjuncts ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
(Sup (neg_depth ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))›

have subset_form: ‹ψqs ‘ (Q ∩ hml_srbb_inner.model_set (Obs α ϕ)) ⊆ ψs ‘ I›
using ψqs_spec by fastforce

hence ‹ e’0 ≤ eu’0› unfolding e’0_def eu’0_def
by (metis (mono_tags, lifting) Sup_subset_mono energy.sel energy_leq_cases image_mono)

have no_q_way: ‹ ∀ q∈Q_α. @ q’. q 7→ α q’ ∧ hml_srbb_models q’ ϕ›
using case_assms(4)
by fastforce

define Q’ where ‹ Q’ ≡ (soft_step_set Q_α α)›
hence ‹ distinguishes_from ϕ p’ Q’›

using case_assms(2,3) no_q_way soft_step_set_is_soft_step_set mem_Collect_eq
unfolding case_assms(4)
by fastforce

with BranchConj have win_a_branch:
‹ spectro_att_wins (expressiveness_price ϕ) (Attacker_Immediate p’ Q’)›
using distinction_implies_winning_budgets_empty_Q by (cases ‹ Q’ = {}› ) auto

have ‹ expr_pr_inner (Obs α ϕ) ≥ (E 1 0 0 0 0 0 0 0)› by auto
hence ‹ (subtract_fn 1 0 0 0 0 0 0 0) (expr_pr_inner (Obs α ϕ))

= Some (expressiveness_price ϕ)›
using expr_obs_phi by auto

with win_a_branch have win_a_step:
‹ spectro_att_wins (the ((subtract_fn 1 0 0 0 0 0 0 0) (expr_pr_inner (Obs α ϕ))))

(Attacker_Immediate p’ Q’)› by auto
define e’ where ‹ e’ = E

(Sup (modal_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup (br_conj_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup (conj_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup (st_conj_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup (imm_conj_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup ({1 + modal_depth_srbb ϕ}
∪ (pos_conjuncts ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I))))))

(Sup (neg_conjuncts ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup (neg_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))›

have ‹ eu’0 ≤ e’› unfolding e’_def eu’0_def
by (auto, meson sup.cobounded2 sup.coboundedI2)

have ‹ spectroscopy_moves (Attacker_Branch p’ Q’) (Attacker_Immediate p’ Q’)
= Some (subtract_fn 1 0 0 0 0 0 0 0)› by simp

with win_a_step weak_spectroscopy_game.attacker_wins.Attack have obs_later_win:
‹ spectro_att_wins (expr_pr_inner (Obs α ϕ)) (Attacker_Branch p’ Q’)›

by force
hence e’_win: ‹ spectro_att_wins e’ (Attacker_Branch p’ Q’)›

unfolding e’_def using weak_spectroscopy_game.win_a_upwards_closure
by auto

have depths: ‹ 1 + modal_depth_srbb ϕ = modal_depth (expr_pr_inner (Obs α ϕ))› by simp
have six_e’: ‹ pos_conjuncts e’ = Sup ({1 + modal_depth_srbb ϕ}

∪ (pos_conjuncts ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))›
using energy.sel(6) unfolding e’_def by blast

hence six_e’_simp: ‹ pos_conjuncts e’ = Sup ({1 + modal_depth_srbb ϕ}
∪ (pos_conjuncts ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))›

by (auto simp add: modal_depth_dominates_pos_conjuncts add_increasing
sup.absorb2 sup.coboundedI1)

hence ‹ pos_conjuncts e’ ≤ modal_depth e’›
unfolding e’_def
by (auto, smt (verit) SUP_mono energy.sel(1) energy.sel(6) image_iff

modal_depth_dominates_pos_conjuncts sup.coboundedI2)
hence ‹ modal_depth (the (min1_6 e’)) = (pos_conjuncts e’)›

by simp
with six_e’ have min_e’_def: ‹ min1_6 e’ = Some (E

(Sup ({1 + modal_depth_srbb ϕ} ∪ pos_conjuncts ‘ (expr_pr_conjunct ‘ (ψs ‘ I))))
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(Sup (br_conj_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup (conj_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup (st_conj_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup (imm_conj_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup ({1 + modal_depth_srbb ϕ}

∪ (pos_conjuncts ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I))))))
(Sup (neg_conjuncts ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I)))))
(Sup (neg_depth ‘ ({expr_pr_inner (Obs α ϕ)} ∪ (expr_pr_conjunct ‘ (ψs ‘ I))))))›
using e’_def min1_6_def six_e’_simp
by (smt (z3) energy.case_eq_if energy.sel min_1_6_simps(1))

hence ‹ expr_pr_inner (Obs α ϕ) ≤ the (min1_6 e’)›
by force

hence obs_win: ‹ spectro_att_wins (the (min1_6 e’)) (Attacker_Branch p’ Q’)›
using obs_later_win weak_spectroscopy_game.win_a_upwards_closure by blast

define e where ‹ e = E
(modal_depth e’)
(1 + br_conj_depth e’)
(1 + conj_depth e’)
(st_conj_depth e’)
(imm_conj_depth e’)
(pos_conjuncts e’)
(neg_conjuncts e’)
(neg_depth e’)›

have ‹ e’ = e - (E 0 1 1 0 0 0 0 0)› unfolding e_def e’_def by auto
hence e’_comp: ‹ Some e’ = (subtract_fn 0 1 1 0 0 0 0 0) e›

by (metis e_def energy.sel energy_leq_cases i0_lb le_iff_add)
have expr_lower: ‹ (E 0 1 1 0 0 0 0 0) ≤ expr_pr_inner (BranchConj α ϕ I ψs)›

using case_assms subset_form by auto
have e’_minus: ‹ e’ = expr_pr_inner (BranchConj α ϕ I ψs) - E 0 1 1 0 0 0 0 0›

unfolding e’_def using energy.sel
by (auto simp add: bot_enat_def sup.left_commute,

(metis (no_types, lifting) SUP_cong image_image)+)
with expr_lower have e’_characterization:

‹ Some e’ = (subtract_fn 0 1 1 0 0 0 0 0) (expr_pr_inner (BranchConj α ϕ I ψs))›
by presburger

have moves: ‹ ∀ g’. spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) g’ 6= None
−→ (((Attacker_Branch p’ Q’ = g’)

∧ (spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) g’
= Some (λe. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) min1_6)))

∨ ((∃ q∈(Q - Q_α). Attacker_Conjunct p q = g’
∧ spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) g’

= (subtract 0 1 1 0 0 0 0 0))))›
proof clarify

fix g’ u
assume no_subtr_move:

‹ spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) g’ = Some u›
‹¬ (∃ q∈Q - Q_α. Attacker_Conjunct p q = g’

∧ spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) g’
= subtract 0 1 1 0 0 0 0 0)›

hence ‹ g’ = Attacker_Branch p’ Q’›
unfolding Q’_def using soft_step_set_is_soft_step_set no_subtr_move local.br_answer
by (cases g’, auto, (metis (no_types, lifting) option.discI)+)

moreover have ‹ Attacker_Branch p’ Q’ = g’
−→ spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) g’

= Some (λe. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) min1_6)›
unfolding Q’_def using soft_step_set_is_soft_step_set by auto

ultimately show ‹ Attacker_Branch p’ Q’ = g’
∧ spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) g’

= Some (λe. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) min1_6)›
by blast

qed
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have obs_e:
‹ ∃ e’. (λe. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) min1_6) e = Some e’
∧ spectro_att_wins e’ (Attacker_Branch p’ Q’)›

using obs_win e’_comp min_e’_def
by (smt (verit, best) bind.bind_lunit min_1_6_some option.collapse)

have ‹ ∀ q∈(Q - Q_α).
spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) (Attacker_Conjunct p q)
= (subtract 0 1 1 0 0 0 0 0)
−→ spectro_att_wins e’0 (Attacker_Conjunct p q)›
using conj_wins ‹ eu’0 ≤ e’› case_assms(4) by blast

with obs_e moves have move_wins:
‹ ∀ g’. spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) g’ 6= None
−→ (∃ e’. (the (spectroscopy_moves (Defender_Branch p α p’ (Q - Q_α) Q_α) g’)) e

= Some e’ ∧ spectro_att_wins e’ g’)›
using ‹ eu’0 ≤ e’› e’_comp ‹ e’0 ≤ eu’0› weak_spectroscopy_game.win_a_upwards_closure

by (smt (verit, ccfv_SIG) option.sel)
moreover have ‹ expr_pr_inner (BranchConj α ϕ I ψs) = e›

using e’_characterization e’_minus unfolding e_def by force
ultimately show ‹ spectro_att_wins (expr_pr_inner (BranchConj α ϕ I ψs))

(Defender_Branch p α p’ (Q - Q_α) Q_α)›
using weak_spectroscopy_game.attacker_wins.Defense spectroscopy_defender.simps(5)
by metis

qed
moreover have

‹ ∀ p Q. Q 6= {} −→ hml_srbb_inner.distinguishes_from (BranchConj α ϕ I ψs) p Q
−→ spectro_att_wins (expr_pr_inner (BranchConj α ϕ I ψs)) (Attacker_Delayed p Q)›

proof clarify
fix p Q
assume case_assms:

‹ hml_srbb_inner.distinguishes_from (BranchConj α ϕ I ψs) p Q›
from case_assms(1) obtain p’ where p’_spec: ‹ p 7→a α p’› ‹ p’ |=SRBB ϕ›

unfolding hml_srbb_inner.distinguishes_from_def
and distinguishes_def by auto

define Q_α where ‹ Q_α = Q - hml_srbb_inner.model_set (Obs α ϕ)›
have ‹ spectro_att_wins (expr_pr_inner (BranchConj α ϕ I ψs))

(Defender_Branch p α p’ (Q - Q_α) Q_α)›
using main_case case_assms(1) p’_spec Q_α_def by blast

moreover have ‹ spectroscopy_moves (Attacker_Delayed p Q)
(Defender_Branch p α p’ (Q - Q_α) Q_α) = id_up›

using p’_spec Q_α_def by auto
ultimately show

‹ spectro_att_wins (expr_pr_inner (BranchConj α ϕ I ψs)) (Attacker_Delayed p Q)›
using weak_spectroscopy_game.attacker_wins_Ga_with_id_step by auto

qed
ultimately show ?case by blast

next
case (Pos χ)
show ?case
proof clarify

fix p q
assume case_assms: ‹ hml_srbb_conj.distinguishes (Pos χ) p q›
then obtain p’ where p’_spec: ‹ p →→ p’› ‹ p’ ∈ hml_srbb_inner.model_set χ›

unfolding hml_srbb_conj.distinguishes_def by auto
moreover have q_reach: ‹ silent_reachable_set {q} ∩ hml_srbb_inner.model_set χ = {}›

using case_assms sreachable_set_is_sreachable
unfolding hml_srbb_conj.distinguishes_def by force

ultimately have distinction:
‹ hml_srbb_inner.distinguishes_from χ p’ (silent_reachable_set {q})›

unfolding hml_srbb_inner.distinguishes_from_def by auto
have q_reach_nonempty:

‹ silent_reachable_set {q} 6= {}›
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‹ silent_reachable_set {q} →→S silent_reachable_set {q} ›
unfolding silent_reachable_set_def
using silent_reachable.intros(1) silent_reachable_trans by auto

hence ‹ spectro_att_wins (expr_pr_inner χ)
(Attacker_Delayed p’ (silent_reachable_set {q}))›

using distinction Pos by blast
from p’_spec(1) this have

‹ spectro_att_wins (expr_pr_inner χ) (Attacker_Delayed p (silent_reachable_set {q}))›
by (induct, auto,

metis weak_spectroscopy_game.attacker_wins_Ga_with_id_step procrastination
option.distinct(1) option.sel spectroscopy_defender.simps(4))

moreover have ‹ spectroscopy_moves (Attacker_Conjunct p q)
(Attacker_Delayed p (silent_reachable_set {q})) = Some min1_6›

using q_reach_nonempty sreachable_set_is_sreachable by fastforce
moreover have ‹ the (min1_6 (expr_pr_conjunct (Pos χ))) ≥ expr_pr_inner χ›

unfolding min1_6_def
by (auto simp add: energy_leq_cases modal_depth_dominates_pos_conjuncts)

ultimately show ‹ spectro_att_wins (expr_pr_conjunct (Pos χ)) (Attacker_Conjunct p q)›
using weak_spectroscopy_game.attacker_wins.simps

weak_spectroscopy_game.win_a_upwards_closure spectroscopy_defender.simps(3)
by (metis (no_types, lifting) min_1_6_some option.discI option.exhaust_sel option.sel)

qed
next

case (Neg χ)
show ?case
proof clarify

fix p q
assume case_assms: ‹ hml_srbb_conj.distinguishes (Neg χ) p q›
then obtain q’ where q’_spec: ‹ q →→ q’› ‹ q’ ∈ hml_srbb_inner.model_set χ›

unfolding hml_srbb_conj.distinguishes_def by auto
moreover have p_reach: ‹ silent_reachable_set {p} ∩ hml_srbb_inner.model_set χ = {}›

using case_assms sreachable_set_is_sreachable
unfolding hml_srbb_conj.distinguishes_def by force

ultimately have distinction:
‹ hml_srbb_inner.distinguishes_from χ q’ (silent_reachable_set {p})›

unfolding hml_srbb_inner.distinguishes_from_def by auto
have ‹ p 6= q› using case_assms unfolding hml_srbb_conj.distinguishes_def by auto
have p_reach_nonempty:

‹ silent_reachable_set {p} 6= {}›
‹ silent_reachable_set {p} →→S silent_reachable_set {p}›

unfolding silent_reachable_set_def
using silent_reachable.intros(1) silent_reachable_trans by auto

hence ‹ spectro_att_wins (expr_pr_inner χ)
(Attacker_Delayed q’ (silent_reachable_set {p}))›

using distinction Neg by blast
from q’_spec(1) this have

‹ spectro_att_wins (expr_pr_inner χ) (Attacker_Delayed q (silent_reachable_set {p}))›
by (induct, auto,

metis weak_spectroscopy_game.attacker_wins_Ga_with_id_step procrastination
option.distinct(1) option.sel spectroscopy_defender.simps(4))

moreover have ‹ spectroscopy_moves (Attacker_Conjunct p q)
(Attacker_Delayed q (silent_reachable_set {p}))

= Some (λe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7)›
using p_reach_nonempty sreachable_set_is_sreachable ‹ p 6= q› by fastforce

moreover have ‹ the (min1_7 (expr_pr_conjunct (Neg χ) - E 0 0 0 0 0 0 0 1))
≥ (expr_pr_inner χ)›

using min1_7_def energy_leq_cases
by (simp add: modal_depth_dominates_neg_conjuncts)

moreover from this have
‹ ∃ e’. Some e’ = (λe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7)

(expr_pr_conjunct (Neg χ)) ∧ e’ ≥ (expr_pr_inner χ)›
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unfolding min_1_7_subtr_simp by auto
ultimately show ‹ spectro_att_wins (expr_pr_conjunct (Neg χ)) (Attacker_Conjunct p q)›

using weak_spectroscopy_game.attacker_wins.Attack
weak_spectroscopy_game.win_a_upwards_closure spectroscopy_defender.simps(3)

by (metis (no_types, lifting) option.discI option.sel)
qed

qed
qed
thus ?thesis

by (metis assms distinction_implies_winning_budgets_empty_Q)
qed

end

end

9.2 Strategy Formulas
theory Strategy_Formulas

imports Spectroscopy_Game Expressiveness_Price
begin

Strategy formulas express attacker strategies in HML. They bridge between HML formulas, the
spectroscopy game and winning budgets. We show that, if some energy e suffices for the attacker
to win, there exists a strategy formula with expressiveness price ≤ e. We also prove that this
formula actually distinguishes the processes of the attacker position.
context lts_tau
begin

inductive
strategy_formula
:: ‹ (’s, ’a) spectroscopy_position ⇒ energy ⇒ (’a, ’s) hml_srbb ⇒ bool›

and
strategy_formula_inner
:: ‹ (’s, ’a) spectroscopy_position ⇒ energy ⇒ (’a, ’s) hml_srbb_inner ⇒ bool›

and
strategy_formula_conjunct
:: ‹ (’s, ’a) spectroscopy_position ⇒ energy ⇒ (’a, ’s) hml_srbb_conjunct ⇒ bool›

where
delay: ‹ strategy_formula (Attacker_Immediate p Q) e (Internal χ)›

if ‹ ∃ Q’.
spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p Q’) = id_up
∧ spectro_att_wins e (Attacker_Delayed p Q’)
∧ strategy_formula_inner (Attacker_Delayed p Q’) e χ›

|
procrastination: ‹ strategy_formula_inner (Attacker_Delayed p Q) e χ›

if ‹ ∃ p’.
spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Delayed p’ Q) = id_up
∧ spectro_att_wins e (Attacker_Delayed p’ Q)
∧ strategy_formula_inner (Attacker_Delayed p’ Q) e χ›

|
observation: ‹ strategy_formula_inner (Attacker_Delayed p Q) e (Obs α ϕ)›

if ‹ ∃ p’ Q’. spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= (subtract 1 0 0 0 0 0 0 0)
∧ spectro_att_wins (e - E 1 0 0 0 0 0 0 0) (Attacker_Immediate p’ Q’)
∧ strategy_formula (Attacker_Immediate p’ Q’) (e - E 1 0 0 0 0 0 0 0) ϕ
∧ p 7→aα p’ ∧ Q 7→aS α Q’›

|
early_conj: ‹ strategy_formula (Attacker_Immediate p Q) e ϕ›

if ‹ ∃ p’. spectroscopy_moves (Attacker_Immediate p Q) (Defender_Conj p’ Q’)
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= (subtract 0 0 0 0 1 0 0 0)
∧ spectro_att_wins (e - E 0 0 0 0 1 0 0 0) (Defender_Conj p’ Q’)
∧ strategy_formula (Defender_Conj p’ Q’) (e - E 0 0 0 0 1 0 0 0) ϕ›

|
late_conj: ‹ strategy_formula_inner (Attacker_Delayed p Q) e χ›

if ‹ (spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p Q)
= id_up ∧ (spectro_att_wins e (Defender_Conj p Q))
∧ strategy_formula_inner (Defender_Conj p Q) e χ)›

|
conj: ‹ strategy_formula_inner (Defender_Conj p Q) e (Conj Q Φ)›

if ‹ ∀ q ∈ Q. spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= (subtract 0 0 1 0 0 0 0 0)
∧ (spectro_att_wins (e - (E 0 0 1 0 0 0 0 0)) (Attacker_Conjunct p q))
∧ strategy_formula_conjunct (Attacker_Conjunct p q) (e - E 0 0 1 0 0 0 0 0) (Φ q)›

|
imm_conj: ‹ strategy_formula (Defender_Conj p Q) e (ImmConj Q Φ)›

if ‹ ∀ q ∈ Q. spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= (subtract 0 0 1 0 0 0 0 0)
∧ (spectro_att_wins (e - (E 0 0 1 0 0 0 0 0)) (Attacker_Conjunct p q))
∧ strategy_formula_conjunct (Attacker_Conjunct p q) (e - E 0 0 1 0 0 0 0 0) (Φ q)›

|
pos: ‹ strategy_formula_conjunct (Attacker_Conjunct p q) e (Pos χ)›

if ‹ (∃ Q’. spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed p Q’)
= Some min1_6 ∧ spectro_att_wins (the (min1_6 e)) (Attacker_Delayed p Q’)
∧ strategy_formula_inner (Attacker_Delayed p Q’) (the (min1_6 e)) χ)›

|
neg: ‹ strategy_formula_conjunct (Attacker_Conjunct p q) e (Neg χ)›

if ‹ ∃ P’. (spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed q P’)
= Some (λe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7)
∧ spectro_att_wins (the (min1_7 (e - E 0 0 0 0 0 0 0 1))) (Attacker_Delayed q P’))
∧ strategy_formula_inner (Attacker_Delayed q P’)

(the (min1_7 (e - E 0 0 0 0 0 0 0 1))) χ›
|

stable: ‹ strategy_formula_inner (Attacker_Delayed p Q) e χ›
if ‹ (∃ Q’. spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p Q’)

= id_up ∧ spectro_att_wins e (Defender_Stable_Conj p Q’)
∧ strategy_formula_inner (Defender_Stable_Conj p Q’) e χ)›

|
stable_conj: ‹ strategy_formula_inner (Defender_Stable_Conj p Q) e (StableConj Q Φ)›

if ‹ ∀ q ∈ Q. spectroscopy_moves (Defender_Stable_Conj p Q) (Attacker_Conjunct p q)
= (subtract 0 0 0 1 0 0 0 0)
∧ spectro_att_wins (e - (E 0 0 0 1 0 0 0 0)) (Attacker_Conjunct p q)
∧ strategy_formula_conjunct (Attacker_Conjunct p q) (e - E 0 0 0 1 0 0 0 0) (Φ q)›

|
branch: ‹ strategy_formula_inner (Attacker_Delayed p Q) e χ›

if ‹ ∃ p’ Q’ α Qα. spectroscopy_moves (Attacker_Delayed p Q)
(Defender_Branch p α p’ Q’ Qα) = id_up

∧ spectro_att_wins e (Defender_Branch p α p’ Q’ Qα)
∧ strategy_formula_inner (Defender_Branch p α p’ Q’ Qα) e χ›

|
branch_conj:

‹ strategy_formula_inner (Defender_Branch p α p’ Q Qα) e (BranchConj α ϕ Q Φ)›
if ‹ ∃ Q’. spectroscopy_moves (Defender_Branch p α p’ Q Qα) (Attacker_Branch p’ Q’)

= Some (λe. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) min1_6)
∧ spectroscopy_moves (Attacker_Branch p’ Q’) (Attacker_Immediate p’ Q’)
= subtract 1 0 0 0 0 0 0 0
∧ (spectro_att_wins (the (min1_6 (e - E 0 1 1 0 0 0 0 0)) - E 1 0 0 0 0 0 0 0)

(Attacker_Immediate p’ Q’))
∧ strategy_formula (Attacker_Immediate p’ Q’)

(the (min1_6 (e - E 0 1 1 0 0 0 0 0)) - E 1 0 0 0 0 0 0 0) ϕ›
‹ ∀ q ∈ Q. spectroscopy_moves (Defender_Branch p α p’ Q Qα) (Attacker_Conjunct p q)
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= (subtract 0 1 1 0 0 0 0 0)
∧ spectro_att_wins (e - (E 0 1 1 0 0 0 0 0)) (Attacker_Conjunct p q)
∧ strategy_formula_conjunct (Attacker_Conjunct p q) (e - E 0 1 1 0 0 0 0 0) (Φ q)›

lemma winning_budget_implies_strategy_formula:
assumes

‹ spectro_att_wins e g›
shows

‹ case g of
Attacker_Immediate p Q ⇒ ∃ϕ. strategy_formula g e ϕ ∧ expressiveness_price ϕ ≤ e

| Attacker_Delayed p Q ⇒ ∃χ. strategy_formula_inner g e χ ∧ expr_pr_inner χ ≤ e
| Attacker_Conjunct p q ⇒

∃ψ. strategy_formula_conjunct g e ψ ∧ expr_pr_conjunct ψ ≤ e
| Defender_Conj p Q ⇒ ∃χ. strategy_formula_inner g e χ ∧ expr_pr_inner χ ≤ e
| Defender_Stable_Conj p Q ⇒ ∃χ. strategy_formula_inner g e χ ∧ expr_pr_inner χ ≤ e
| Defender_Branch p α p’ Q Qa ⇒

∃χ. strategy_formula_inner g e χ ∧ expr_pr_inner χ ≤ e
| Attacker_Branch p Q ⇒

∃ϕ. strategy_formula (Attacker_Immediate p Q) (e - E 1 0 0 0 0 0 0 0) ϕ
∧ expressiveness_price ϕ ≤ e - E 1 0 0 0 0 0 0 0›

using assms
proof(induction rule: weak_spectroscopy_game.attacker_wins.induct)

case (Attack g g’ e e’)
then show ?case
proof (induct g)

case (Attacker_Immediate p Q)
hence move: ‹

(∃ p Q. g’ = Defender_Conj p Q) −→
(∃ϕ. strategy_formula_inner g’ (the (weak_spectroscopy_game.weight g g’ e)) ϕ
∧ expr_pr_inner ϕ ≤ weak_spectroscopy_game.updated g g’ e) ∧

(∃ p Q. g’ = Attacker_Delayed p Q) −→
(∃ϕ. strategy_formula_inner g’ (the (weak_spectroscopy_game.weight g g’ e)) ϕ
∧ expr_pr_inner ϕ ≤ weak_spectroscopy_game.updated g g’ e)›

using weak_spectroscopy_game.attacker_wins.cases
by simp

from move Attacker_Immediate have move_cases:
‹ (∃ p’ Q’. g’ = (Attacker_Delayed p’ Q’)) ∨ (∃ p’ Q’. g’ = (Defender_Conj p’ Q’))›

using spectroscopy_moves.simps
by (smt (verit, del_insts) spectroscopy_defender.elims(2,3))

show ?case using move_cases
proof(rule disjE)

assume ‹ ∃ p’ Q’. g’ = Attacker_Delayed p’ Q’›
then obtain p’ Q’ where g’_att_del: ‹ g’ = Attacker_Delayed p’ Q’› by blast
have e_comp:

‹ the (spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p’ Q’)) e
= Some e›

by (smt (verit, ccfv_threshold) Spectroscopy_Game.lts_tau.delay g’_att_del
Attacker_Immediate move option.exhaust_sel option.inject)

have ‹ p’ = p›
by (metis g’_att_del Attacker_Immediate(2) spectroscopy_moves.simps(1))

moreover have ‹ (spectro_att_wins e (Attacker_Delayed p Q’))›
using ‹ g’ = Attacker_Delayed p’ Q’› ‹ p’ = p› Attacker_Immediate

weak_spectroscopy_game.win_a_upwards_closure e_comp
by simp

ultimately have ‹ (∃χ.
strategy_formula_inner g’

(the (weak_spectroscopy_game.weight (Attacker_Immediate p Q) g’ e)) χ ∧
expr_pr_inner χ ≤ weak_spectroscopy_game.updated (Attacker_Immediate p Q) g’ e)›
using g’_att_del Attacker_Immediate by fastforce

then obtain χ where
‹ (strategy_formula_inner (Attacker_Delayed p Q’) e χ ∧ expr_pr_inner χ ≤ e)›
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using ‹ p’ = p› e_comp g’_att_del by auto
hence ‹ ∃ Q’. spectroscopy_moves (Attacker_Immediate p Q) (Attacker_Delayed p Q’) = id_up
∧ (spectro_att_wins e (Attacker_Delayed p Q’))
∧ strategy_formula_inner (Attacker_Delayed p Q’) e χ›
using g’_att_del
by (smt (verit) Spectroscopy_Game.lts_tau.delay

‹ spectro_att_wins e (Attacker_Delayed p Q’)› Attacker_Immediate)
hence ‹ strategy_formula (Attacker_Immediate p Q) e (Internal χ)›

using strategy_formula_strategy_formula_inner_strategy_formula_conjunct.delay by blast
moreover have ‹ expressiveness_price (Internal χ) ≤ e›

using ‹ (strategy_formula_inner (Attacker_Delayed p Q’) e χ ∧ expr_pr_inner χ ≤ e)›
by auto

ultimately show ?case by auto
next

assume ‹ ∃ p’ Q’. g’ = Defender_Conj p’ Q’›
then obtain p’ Q’ where g’_def_conj: ‹ g’ = Defender_Conj p’ Q’› by blast
hence M: ‹ spectroscopy_moves (Attacker_Immediate p Q) (Defender_Conj p’ Q’)

= (subtract 0 0 0 0 1 0 0 0)›
using local.f_or_early_conj Attacker_Immediate by presburger

hence Qp’: ‹ Q6={}› ‹ Q = Q’› ‹ p = p’›
using Attack.hyps(2) Attacker_Immediate g’_def_conj local.f_or_early_conj by metis+

from M have M’:
‹ weak_spectroscopy_game.updated (Attacker_Immediate p Q) (Defender_Conj p’ Q’) e

= e - (E 0 0 0 0 1 0 0 0)›
using Attack.hyps(3) g’_def_conj Attacker_Immediate
by (smt (verit) option.distinct(1) option.sel)

hence M’’: ‹ (spectro_att_wins (e - (E 0 0 0 0 1 0 0 0)) (Defender_Conj p Q’))›
using g’_def_conj Qp’ Attacker_Immediate weak_spectroscopy_game.win_a_upwards_closure
by force

with g’_def_conj have IH_case: ‹ ∃χ.
strategy_formula_inner g’

(weak_spectroscopy_game.updated (Attacker_Immediate p Q) g’ e) χ
∧ expr_pr_inner χ ≤ weak_spectroscopy_game.updated (Attacker_Immediate p Q) g’ e›
using Attacker_Immediate by auto

hence ‹ ∃χ. strategy_formula_inner (Defender_Conj p Q) (e - E 0 0 0 0 1 0 0 0) χ
∧ expr_pr_inner χ ≤ (e - E 0 0 0 0 1 0 0 0)›

using ‹ spectro_att_wins (e - (E 0 0 0 0 1 0 0 0)) (Defender_Conj p Q’)› IH_case
Qp’ M’ g’_def_conj by auto

then obtain χ where S:
‹ strategy_formula_inner (Defender_Conj p Q) (e - E 0 0 0 0 1 0 0 0) χ
∧ expr_pr_inner χ ≤ e - E 0 0 0 0 1 0 0 0›

by blast
hence ‹ ∃ψ. χ = Conj Q ψ›

using strategy_formula_strategy_formula_inner_strategy_formula_conjunct.conj
g’_def_conj Attacker_Immediate

unfolding Qp’
by (smt (verit) spectroscopy_moves.simps(64,70) spectroscopy_position.distinct(17)

spectroscopy_position.inject(5) strategy_formula_inner.cases)
then obtain ψ where ‹χ = Conj Q ψ› by auto
hence ‹ strategy_formula (Defender_Conj p Q) (e - (E 0 0 0 0 1 0 0 0)) (ImmConj Q ψ)›

using S strategy_formula_strategy_formula_inner_strategy_formula_conjunct.conj
strategy_formula_strategy_formula_inner_strategy_formula_conjunct.imm_conj
Qp’ Attacker_Immediate unfolding g’_def_conj

by (smt (verit) lts_tau.spectroscopy_moves.simps(70) hml_srbb_inner.inject(2)
spectroscopy_position.distinct(17,37) strategy_formula_inner.cases)

hence SI: ‹ strategy_formula (Attacker_Immediate p Q) e (ImmConj Q ψ)›
using delay early_conj Qp’
by (metis (no_types, lifting) M’’ local.f_or_early_conj)

have ‹ expr_pr_inner (Conj Q ψ) ≤ (e - (E 0 0 0 0 1 0 0 0))›
using S ‹χ = Conj Q ψ› by simp

hence ‹ expressiveness_price (ImmConj Q ψ) ≤ e› using expr_imm_conj Qp’
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by (smt (verit) M g’_def_conj Attacker_Immediate option.sel option.simps(3))
thus ?thesis using SI by auto

qed
next

case (Attacker_Branch p Q)
hence g’_def: ‹ g’ = Attacker_Immediate p Q› using br_acct

by (induct g’, auto) (metis option.discI)+
hence move:

‹ spectroscopy_moves (Attacker_Branch p Q) g’ = subtract 1 0 0 0 0 0 0 0› by simp
then obtain ϕ where

‹ strategy_formula g’ (weak_spectroscopy_game.updated (Attacker_Branch p Q) g’ e) ϕ ∧
expressiveness_price ϕ ≤ weak_spectroscopy_game.updated (Attacker_Branch p Q) g’ e›

using Attacker_Branch g’_def by auto
hence ‹ (strategy_formula (Attacker_Immediate p Q) (e - E 1 0 0 0 0 0 0 0) ϕ)

∧ expressiveness_price ϕ ≤ e - E 1 0 0 0 0 0 0 0›
using move Attacker_Branch unfolding g’_def
by (smt (verit, del_insts) option.distinct(1) option.sel)

then show ?case by auto
next

case (Attacker_Conjunct p q)
hence ‹ (∃ p’ Q’. g’ = (Attacker_Delayed p’ Q’))›

using Attack.hyps spectroscopy_moves.simps
by (smt (verit, del_insts) spectroscopy_defender.elims(1))

then obtain p’ Q’ where
g’_att_del: ‹ g’ = Attacker_Delayed p’ Q’› by blast

show ?case
proof(cases ‹ p = p’› )

case True
hence ‹ {q} →→S Q’›

using g’_att_del local.pos_neg_clause Attacker_Conjunct by presburger
hence post_win:

‹ (the (spectroscopy_moves (Attacker_Conjunct p q) g’) e) = min1_6 e›
‹ (spectro_att_wins (the (min1_6 e)) (Attacker_Delayed p Q’))›

using ‹ {q} →→S Q’› Attacker_Conjunct weak_spectroscopy_game.win_a_upwards_closure
unfolding True g’_att_del
by auto

then obtain χ where χ_spec:
‹ strategy_formula_inner (Attacker_Delayed p Q’) (the (min1_6 e)) χ›
‹ expr_pr_inner χ ≤ the (min1_6 e)›
using Attacker_Conjunct Attack True post_win unfolding g’_att_del
by (smt (verit) option.sel spectroscopy_position.simps(51))

hence
‹ spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed p Q’) = Some min1_6›
‹ spectro_att_wins (the (min1_6 e)) (Attacker_Delayed p Q’)›
‹ strategy_formula_inner (Attacker_Delayed p Q’) (the (min1_6 e)) χ›
using ‹ {q} →→S Q’› local.pos_neg_clause post_win by auto

hence ‹ strategy_formula_conjunct (Attacker_Conjunct p q) e (Pos χ)›
using strategy_formula_strategy_formula_inner_strategy_formula_conjunct.delay pos
by blast

thus ?thesis
using χ_spec expr_pos by fastforce

next
case False
hence Qp’: ‹ {p} →→S Q’› ‹ p’ = q›

using local.pos_neg_clause Attacker_Conjunct unfolding g’_att_del
by presburger+

hence move: ‹ spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed p’ Q’)
= Some (λe. Option.bind ((subtract_fn 0 0 0 0 0 0 0 1) e) min1_7)›
using False by auto

hence win:
‹ spectro_att_wins (the (min1_7 (e - E 0 0 0 0 0 0 0 1))) (Attacker_Delayed p’ Q’)›
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using Attacker_Conjunct unfolding g’_att_del
by (smt (verit) bind.bind_lunit bind.bind_lzero option.distinct(1) option.sel)

hence ‹ ∃ϕ. strategy_formula_inner (Attacker_Delayed p’ Q’)
(the (min1_7 (e - E 0 0 0 0 0 0 0 1))) ϕ

∧ expr_pr_inner ϕ ≤ the (min1_7 (e - E 0 0 0 0 0 0 0 1))›
using Attack Attacker_Conjunct move unfolding g’_att_del
by (smt (verit, del_insts) bind.bind_lunit bind_eq_None_conv option.discI

option.sel spectroscopy_position.simps(51))
then obtain χ where χ_spec:

‹ strategy_formula_inner (Attacker_Delayed p’ Q’)
(the (min1_7 (e - E 0 0 0 0 0 0 0 1))) χ›

‹ expr_pr_inner χ ≤ the (min1_7 (e - E 0 0 0 0 0 0 0 1))›
by blast

hence ‹ strategy_formula_conjunct (Attacker_Conjunct p q) e (Neg χ)›
using strategy_formula_strategy_formula_inner_strategy_formula_conjunct.delay

neg Qp’ win move by blast
thus ?thesis

using χ_spec Attacker_Conjunct expr_neg move
unfolding g’_att_del
by (smt (verit, best) bind.bind_lunit bind_eq_None_conv option.distinct(1)

option.sel spectroscopy_position.simps(52))
qed

next
case (Attacker_Delayed p Q)
then consider

(Att_Del) ‹ ∃ p Q. g’ = Attacker_Delayed p Q› |
(Att_Imm) ‹ ∃ p’ Q’. g’ = Attacker_Immediate p’ Q’› |
(Def_Conj) ‹ ∃ p Q. g’ = Defender_Conj p Q› |
(Def_St_Conj) ‹ ∃ p Q. g’ = Defender_Stable_Conj p Q› |
(Def_Branch) ‹ ∃ p’ α p’’ Q’ Qα. g’ = Defender_Branch p’ α p’’ Q’ Qα›
by (cases g’, auto)

then show ?case
proof (cases)

case Att_Del
then obtain p’ Q’ where

g’_att_del: ‹ g’ = Attacker_Delayed p’ Q’› by blast
have Qp’: ‹ Q’ = Q› ‹ p 6= p’› ‹ p 7→ τ p’›

using Attacker_Delayed g’_att_del Spectroscopy_Game.lts_tau.procrastination
by metis+

hence e_comp: ‹ (the (spectroscopy_moves (Attacker_Delayed p Q) g’) e) = Some e›
using g’_att_del
by simp

hence att_win: ‹ (spectro_att_wins e (Attacker_Delayed p’ Q’))›
using g’_att_del Qp’ Attacker_Delayed weak_spectroscopy_game.attacker_wins.Defense e_comp
by (metis option.sel)

have ‹ (weak_spectroscopy_game.updated (Attacker_Delayed p Q) g’ e) = e›
using g’_att_del Attacker_Delayed e_comp by fastforce

then obtain χ where χ_spec:
‹ strategy_formula_inner (Attacker_Delayed p’ Q’) e χ ∧ expr_pr_inner χ ≤ e›

using Attacker_Delayed g’_att_del by auto
hence ‹ ∃ p’. spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Delayed p’ Q) = id_up
∧ spectro_att_wins e (Attacker_Delayed p’ Q)
∧ strategy_formula_inner (Attacker_Delayed p’ Q) e χ›

using e_comp g’_att_del Qp’ local.procrastination Attack.hyps att_win
Spectroscopy_Game.lts_tau.procrastination

by metis
hence ‹ strategy_formula_inner (Attacker_Delayed p Q) e χ›

using procrastination by blast
moreover have ‹ expr_pr_inner χ ≤ e›

using χ_spec by blast
ultimately show ?thesis by auto

100



next
case Att_Imm
then obtain p’ Q’ where

g’_att_imm: ‹ g’ = Attacker_Immediate p’ Q’› by blast
hence move: ‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’) 6= None›

using Attacker_Delayed by blast
hence ‹ ∃ a. p 7→a a p’ ∧ Q 7→aS a Q’› unfolding spectroscopy_moves.simps(3) by presburger
then obtain α where α_prop: ‹ p 7→a α p’› ‹ Q 7→aS α Q’› by blast
moreover then have weight:

‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= subtract 1 0 0 0 0 0 0 0›

by (simp, metis)
moreover then have update:

‹ weak_spectroscopy_game.updated (Attacker_Delayed p Q) g’ e
= e - (E 1 0 0 0 0 0 0 0)›

using g’_att_imm Attacker_Delayed
by (smt (verit, del_insts) option.distinct(1) option.sel)

moreover then obtain χ where χ_prop:
‹ strategy_formula (Attacker_Immediate p’ Q’) (e - E 1 0 0 0 0 0 0 0) χ›
‹ expressiveness_price χ ≤ e - E 1 0 0 0 0 0 0 0›
using Attacker_Delayed g’_att_imm
by auto

moreover have ‹ spectro_att_wins (e - (E 1 0 0 0 0 0 0 0)) (Attacker_Immediate p’ Q’)›
using weak_spectroscopy_game.attacker_wins.Attack Attack.hyps(4)

Attacker_Delayed.prems(3) calculation(4) g’_att_imm
by force

ultimately have ‹ strategy_formula_inner (Attacker_Delayed p Q) e (Obs α χ)›
using local.observation[of p Q e χ α] by blast

moreover have ‹ expr_pr_inner (Obs α χ) ≤ e›
using expr_obs χ_prop Attacker_Delayed g’_att_imm weight update
by (smt (verit) option.sel)

ultimately show ?thesis by auto
next

case Def_Conj
then obtain p’ Q’ where

g’_def_conj: ‹ g’ = Defender_Conj p’ Q’› by blast
hence ‹ p = p’› ‹ Q = Q’›

using local.late_inst_conj Attacker_Delayed by presburger+
hence

‹ the (spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p’ Q’)) e = Some e›
by fastforce

hence
‹ spectro_att_wins e (Defender_Conj p’ Q’)›
‹ weak_spectroscopy_game.updated g g’ e = e›

using Attacker_Delayed Attack unfolding g’_def_conj by simp+
then obtain χ where
χ_prop: ‹ strategy_formula_inner (Defender_Conj p’ Q’) e χ ∧ expr_pr_inner χ ≤ e›
using Attack g’_def_conj by auto

hence
‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Conj p’ Q’) = id_up
∧ spectro_att_wins e (Defender_Conj p’ Q’)
∧ strategy_formula_inner (Defender_Conj p’ Q’) e χ›
by (simp add: ‹ Q = Q’› ‹ spectro_att_wins e (Defender_Conj p’ Q’)› ‹ p = p’› )

then show ?thesis
using χ_prop ‹ Q = Q’› ‹ spectro_att_wins e (Defender_Conj p’ Q’)› ‹ p = p’› late_conj
by fastforce

next
case Def_St_Conj
then obtain p’ Q’ where g’_def: ‹ g’ = Defender_Stable_Conj p’ Q’› by blast
hence pQ’: ‹ p = p’› ‹ Q’ = { q ∈ Q. (@ q’. q 7→τ q’)}› ‹ @ p’’. p 7→τ p’’›

using local.late_stbl_conj Attacker_Delayed
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by meson+
hence ‹ the (spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p’ Q’)) e

= Some e›
by auto

hence ‹ spectro_att_wins e (Defender_Stable_Conj p’ Q’)›
‹ weak_spectroscopy_game.updated g g’ e = e›

using Attacker_Delayed Attack unfolding g’_def by force+
then obtain χ where χ_prop:

‹ strategy_formula_inner (Defender_Stable_Conj p’ Q’) e χ› ‹ expr_pr_inner χ ≤ e›
using Attack g’_def by auto

have ‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p’ Q’) = id_up
∧ spectro_att_wins e (Defender_Stable_Conj p’ Q’)
∧ strategy_formula_inner (Defender_Stable_Conj p’ Q’) e χ›
using Attack χ_prop ‹ spectro_att_wins e (Defender_Stable_Conj p’ Q’)› late_stbl_conj

pQ’ g’_def
by force

thus ?thesis using local.stable[of p Q e χ] pQ’ χ_prop by fastforce
next

case Def_Branch
then obtain p’ α p’’ Q’ Qα where

g’_def_br: ‹ g’ = Defender_Branch p’ α p’’ Q’ Qα› by blast
hence pQ’: ‹ p = p’› ‹ Q’ = Q - Qα› ‹ p 7→a α p’’› ‹ Qα ⊆ Q›

using br_conj Attacker_Delayed by metis+
hence

‹ the (spectroscopy_moves (Attacker_Delayed p Q) (Defender_Branch p’ α p’’ Q’ Qα)) e
= Some e›

by auto
hence post:

‹ spectro_att_wins e (Defender_Branch p’ α p’’ Q’ Qα)›
‹ weak_spectroscopy_game.updated g g’ e = e›

using Attack option.inject Attacker_Delayed unfolding g’_def_br by auto
then obtain χ where χ_prop:

‹ strategy_formula_inner (Defender_Branch p’ α p’’ Q’ Qα) e χ›
‹ expr_pr_inner χ ≤ e›

using g’_def_br Attack Attacker_Delayed
by auto

hence ‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Branch p α p’’ Q’ Qα) = id_up
∧ spectro_att_wins e (Defender_Branch p α p’’ Q’ Qα)
∧ strategy_formula_inner (Defender_Branch p α p’’ Q’ Qα) e χ›

using g’_def_br local.branch Attack post pQ’ by simp
hence ‹ strategy_formula_inner (Attacker_Delayed p Q) e χ›

using Attack Attacker_Delayed local.br_conj branch
unfolding g’_def_br by fastforce

thus ?thesis using χ_prop
by fastforce

qed
qed force+

next
case (Defense g e)
thus ?case
proof (induct g)

case (Defender_Branch p α p’ Q Qa)
hence conjs:

‹ ∀ q∈ Q. spectroscopy_moves (Defender_Branch p α p’ Q Qa) (Attacker_Conjunct p q)
= subtract 0 1 1 0 0 0 0 0›

by simp
obtain e’ where e’_spec:

‹ ∀ q∈Q. weak_spectroscopy_game.weight (Defender_Branch p α p’ Q Qa)
(Attacker_Conjunct p q) e = Some e’

∧ spectro_att_wins e’ (Attacker_Conjunct p q)
∧ (∃ψ. strategy_formula_conjunct (Attacker_Conjunct p q) e’ ψ
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∧ expr_pr_conjunct ψ ≤ e’)›
using conjs Defender_Branch option.distinct(1) option.sel
by (smt (z3) spectroscopy_position.simps(52))

hence e’_def: ‹ Q 6= {} =⇒ e’ = e - E 0 1 1 0 0 0 0 0› using conjs
by (smt (verit) all_not_in_conv option.distinct(1) option.sel)

then obtain Φ where Φ_spec:
‹ ∀ q ∈ Q. strategy_formula_conjunct (Attacker_Conjunct p q) e’ (Φ q)
∧ expr_pr_conjunct (Φ q) ≤ e’›

using e’_spec by metis
have obs: ‹ spectroscopy_moves (Defender_Branch p α p’ Q Qa)

(Attacker_Branch p’ (soft_step_set Qa α))
= Some (λe. Option.bind ((subtract_fn 0 1 1 0 0 0 0 0) e) min1_6)›

by (simp add: soft_step_set_is_soft_step_set)
have ‹ ∀ p Q. Attacker_Branch p’ (soft_step_set Qa α) = Attacker_Branch p Q
−→ p = p’ ∧ Q = soft_step_set Qa α› by blast

with option.discI[OF obs] obtain e’’ where
‹ ∃ϕ. strategy_formula (Attacker_Immediate p’ (soft_step_set Qa α))

(e’’ - E 1 0 0 0 0 0 0 0) ϕ
∧ expressiveness_price ϕ ≤ e’’ - E 1 0 0 0 0 0 0 0›

using Defense.IH option.distinct(1) option.sel
by (smt (verit, best) Defender_Branch.prems(2) spectroscopy_position.simps(53))

then obtain ϕ where
‹ strategy_formula (Attacker_Immediate p’ (soft_step_set Qa α))

(weak_spectroscopy_game.updated (Defender_Branch p α p’ Q Qa)
(Attacker_Branch p’ (soft_step_set Qa α)) e - E 1 0 0 0 0 0 0 0) ϕ›

‹ expressiveness_price ϕ
≤ weak_spectroscopy_game.updated (Defender_Branch p α p’ Q Qa)

(Attacker_Branch p’ (soft_step_set Qa α)) e - E 1 0 0 0 0 0 0 0›
using Defender_Branch.prems(2) option.discI[OF obs]
by (smt (verit, best) option.sel spectroscopy_position.simps(53))

hence obs_strat:
‹ strategy_formula (Attacker_Immediate p’ (soft_step_set Qa α))

(the (min1_6 (e - E 0 1 1 0 0 0 0 0)) - E 1 0 0 0 0 0 0 0) ϕ›
‹ expressiveness_price ϕ ≤ (the (min1_6 (e - E 0 1 1 0 0 0 0 0)) - E 1 0 0 0 0 0 0 0)›
by (smt (verit, best) Defender_Branch.prems(2) bind.bind_lunit bind.bind_lzero obs

option.distinct(1) option.sel)+
have ‹ spectroscopy_moves (Attacker_Branch p’ (soft_step_set Qa α))

(Attacker_Immediate p’ (soft_step_set Qa α))
= (subtract 1 0 0 0 0 0 0 0)› by simp

obtain e’’ where win_branch:
‹ Some e’’ = min1_6 (e - E 0 1 1 0 0 0 0 0)›
‹ spectro_att_wins e’’ (Attacker_Branch p’ (soft_step_set Qa α))›

using Defender_Branch
by (smt (verit, ccfv_threshold) bind.bind_lunit bind_eq_None_conv obs

option.discI option.sel)
then obtain g’’ where g’’_spec:

‹ spectroscopy_moves (Attacker_Branch p’ (soft_step_set Qa α)) g’’ 6= None›
‹ spectro_att_wins (weak_spectroscopy_game.updated

(Attacker_Branch p’ (soft_step_set Qa α)) g’’ (the (min1_6 (e - E 0 1 1 0 0 0 0 0))))
g’’›

using weak_spectroscopy_game.attacker_wins.cases
by (metis spectroscopy_defender.simps(2) option.sel)

hence move_immediate:
‹ g’’ = (Attacker_Immediate p’ (soft_step_set Qa α))
∧ spectroscopy_moves (Attacker_Branch p’ (soft_step_set Qa α))

(Attacker_Immediate p’ (soft_step_set Qa α)) = subtract 1 0 0 0 0 0 0 0›
using br_acct
by (cases g’’, auto) (metis option.discI)+

then obtain e’’’ where win_immediate:
‹ Some e’’’ = subtract_fn 1 0 0 0 0 0 0 0 e’’›
‹ spectro_att_wins e’’’ (Attacker_Immediate p’ (soft_step_set Qa α))›
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using g’’_spec win_branch option.distinct(1) option.sel spectroscopy_defender.elims(1)
spectroscopy_defender.simps(2)
weak_spectroscopy_game.attacker_wins.cases[OF win_branch(2)]

by (smt (verit, del_insts) local.br_acct spectroscopy_moves.simps(23,53,57,61,66,72))
hence strat:

‹ strategy_formula_inner (Defender_Branch p α p’ Q Qa) e (BranchConj α ϕ Q Φ)›
using branch_conj obs move_immediate obs_strat Φ_spec conjs e’_def e’_spec
by (smt (verit, best) option.distinct(1) option.sel win_branch(1))

have ‹ E 1 0 0 0 0 0 0 0 ≤ e’’› using win_branch g’’_spec
by (metis option.distinct(1) win_immediate(1))

hence above_one: ‹ 0 < min (modal_depth e) (pos_conjuncts e)›
using win_immediate win_branch
by (metis energy.sel(1) energy.sel(6) gr_zeroI idiff_0_right leq_components

min_1_6_simps(1) minus_energy_def not_one_le_zero option.sel)
have ‹ ∀ q ∈ Q. expr_pr_conjunct (Φ q) ≤ (e - (E 0 1 1 0 0 0 0 0))›

using Φ_spec e’_def by blast
moreover have ‹ expressiveness_price ϕ

≤ the (min1_6 (e - E 0 1 1 0 0 0 0 0)) - E 1 0 0 0 0 0 0 0›
using obs_strat(2) by blast

moreover hence ‹ modal_depth_srbb ϕ ≤ min (modal_depth e) (pos_conjuncts e) - 1›
by simp

hence ‹ 1 + modal_depth_srbb ϕ ≤ min (modal_depth e) (pos_conjuncts e)›
by (metis above_one add.right_neutral add_diff_cancel_enat

add_mono_thms_linordered_semiring(1) enat.simps(3) enat_defs(2) ileI1
le_iff_add plus_1_eSuc(1))

moreover hence ‹ 1 + modal_depth_srbb ϕ ≤ pos_conjuncts e› by simp
ultimately have ‹ expr_pr_inner (BranchConj α ϕ Q Φ) ≤ e›

using expr_br_conj e’_def obs Defender_Branch(2) win_branch(1) win_immediate(1)
by (smt (verit, best) bind_eq_None_conv option.distinct(1) option.sel option.simps(3))

then show ?case using strat by force
next

case (Defender_Conj p Q)
hence moves:

‹ ∀ g’. spectroscopy_moves (Defender_Conj p Q) g’ 6= None
−→ (∃ e’. weak_spectroscopy_game.weight (Defender_Conj p Q) g’ e = Some e’

∧ spectro_att_wins e’ g’)
∧ (∃ q. g’ = (Attacker_Conjunct p q))›

using local.conj_answer
lts_tau.spectroscopy_defender.elims spectroscopy_moves.simps(30,33,34,47,58,62)

by (smt (verit, best))
show ?case
proof (cases ‹ Q = {}› )

case True
then obtain Φ where ‹ ∀ q ∈ Q.

spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= subtract 0 0 1 0 0 0 0 0

∧ spectro_att_wins (e - (E 0 0 1 0 0 0 0 0)) (Attacker_Conjunct p q)
∧ strategy_formula_conjunct (Attacker_Conjunct p q) (e - E 0 0 1 0 0 0 0 0) (Φ q)›
by (auto simp add: emptyE)

hence Strat: ‹ strategy_formula_inner (Defender_Conj p Q) e (Conj {} Φ)›
using ‹ Q = {}› conj by blast

hence
‹ modal_depth_srbb_inner (Conj Q Φ) = Sup ((modal_depth_srbb_conjunct ◦ Φ) ‘ Q)›
‹ branch_conj_depth_inner (Conj Q Φ) = Sup ((branch_conj_depth_conjunct ◦ Φ) ‘ Q)›
‹ inst_conj_depth_inner (Conj Q Φ) = 0›
‹ st_conj_depth_inner (Conj Q Φ) = Sup ((st_conj_depth_conjunct ◦ Φ) ‘ Q)›
‹ imm_conj_depth_inner (Conj Q Φ) = Sup ((imm_conj_depth_conjunct ◦ Φ) ‘ Q)›
‹ max_pos_conj_depth_inner (Conj Q Φ) = Sup ((max_pos_conj_depth_conjunct ◦ Φ) ‘ Q)›
‹ max_neg_conj_depth_inner (Conj Q Φ) = Sup ((max_neg_conj_depth_conjunct ◦ Φ) ‘ Q)›
‹ neg_depth_inner (Conj Q Φ) = Sup ((neg_depth_conjunct ◦ Φ) ‘ Q)›
using ‹ Q = {}› by auto
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hence
‹ modal_depth_srbb_inner (Conj Q Φ) = 0›
‹ branch_conj_depth_inner (Conj Q Φ) = 0›
‹ inst_conj_depth_inner (Conj Q Φ) = 0›
‹ st_conj_depth_inner (Conj Q Φ) = 0›
‹ imm_conj_depth_inner (Conj Q Φ) = 0›
‹ max_pos_conj_depth_inner (Conj Q Φ) = 0›
‹ max_neg_conj_depth_inner (Conj Q Φ) = 0›
‹ neg_depth_inner (Conj Q Φ) = 0›
using ‹ Q = {}› by (simp add: bot_enat_def)+

hence ‹ expr_pr_inner (Conj Q Φ) = (E 0 0 0 0 0 0 0 0)›
using ‹ Q = {}› by force

hence price: ‹ expr_pr_inner (Conj Q Φ) ≤ e›
by auto

with Strat price True show ?thesis by auto
next

case False
hence fa_q: ‹ ∀ q ∈ Q. ∃ e’.

Some e’ = subtract_fn 0 0 1 0 0 0 0 0 e
∧ spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)

= subtract 0 0 1 0 0 0 0 0
∧ spectro_att_wins e’ (Attacker_Conjunct p q)›
using moves local.conj_answer option.distinct(1)
by (smt (z3) option.sel)

have q_ex_e’: ‹ ∀ q ∈ Q. ∃ e’.
spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= subtract 0 0 1 0 0 0 0 0

∧ Some e’ = subtract_fn 0 0 1 0 0 0 0 0 e
∧ spectro_att_wins e’ (Attacker_Conjunct p q)
∧ (∃ϕ. strategy_formula_conjunct (Attacker_Conjunct p q) e’ ϕ

∧ expr_pr_conjunct ϕ ≤ e’)›
proof safe

fix q
assume ‹ q ∈ Q›
then obtain e’ where e’_spec:

‹ Some e’ = subtract_fn 0 0 1 0 0 0 0 0 e›
‹ spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)

= subtract 0 0 1 0 0 0 0 0›
‹ spectro_att_wins e’ (Attacker_Conjunct p q)›
using fa_q by blast

hence ‹ weak_spectroscopy_game.weight (Defender_Conj p Q) (Attacker_Conjunct p q) e
= Some e’›

by simp
then have ‹ ∃ψ. strategy_formula_conjunct (Attacker_Conjunct p q) e’ ψ

∧ expr_pr_conjunct ψ ≤ e’›
using Defender_Conj e’_spec
by (smt (verit, best) option.distinct(1) option.sel spectroscopy_position.simps(52))

thus ‹ ∃ e’. spectroscopy_moves (Defender_Conj p Q) (Attacker_Conjunct p q)
= subtract 0 0 1 0 0 0 0 0

∧ Some e’ = subtract_fn 0 0 1 0 0 0 0 0 e
∧ spectro_att_wins e’ (Attacker_Conjunct p q)
∧ (∃ϕ. strategy_formula_conjunct (Attacker_Conjunct p q) e’ ϕ

∧ expr_pr_conjunct ϕ ≤ e’)›
using e’_spec by blast

qed
hence ‹ ∃Φ. ∀ q ∈ Q.

spectro_att_wins (e - E 0 0 1 0 0 0 0 0) (Attacker_Conjunct p q)
∧ (strategy_formula_conjunct (Attacker_Conjunct p q) (e - E 0 0 1 0 0 0 0 0) (Φ q)
∧ expr_pr_conjunct (Φ q) ≤ (e - E 0 0 1 0 0 0 0 0))›
by (metis (no_types, opaque_lifting) option.distinct(1) option.inject)

then obtain Φ where IH:
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‹ ∀ q ∈ Q. spectro_att_wins (e - E 0 0 1 0 0 0 0 0) (Attacker_Conjunct p q)
∧ (strategy_formula_conjunct (Attacker_Conjunct p q) (e - E 0 0 1 0 0 0 0 0) (Φ q)
∧ expr_pr_conjunct (Φ q) ≤ (e - E 0 0 1 0 0 0 0 0))› by auto

hence ‹ strategy_formula_inner (Defender_Conj p Q) e (Conj Q Φ)›
by (simp add: conj)

moreover have ‹ expr_pr_inner (Conj Q Φ) ≤ e›
using IH expr_conj ‹ Q 6= {}› q_ex_e’
by (metis (no_types, lifting) equals0I option.distinct(1))

ultimately show ?thesis by auto
qed

next
case (Defender_Stable_Conj p Q)
hence cases:

‹ ∀ g’. spectroscopy_moves (Defender_Stable_Conj p Q) g’ 6= None −→
(∃ e’. weak_spectroscopy_game.weight (Defender_Stable_Conj p Q) g’ e = Some e’
∧ spectro_att_wins e’ g’)
∧ ((∃ p’ q. g’ = Attacker_Conjunct p’ q) ∨ (∃ p’ Q’. g’ = Defender_Conj p’ Q’))›

by (metis (no_types, opaque_lifting)
spectroscopy_defender.elims(2,3) spectroscopy_moves.simps(35,36,37,38,74))

show ?case
proof(cases ‹ Q = {}› )

case True
then obtain e’ where e’_spec:

‹ weak_spectroscopy_game.weight (Defender_Stable_Conj p Q) (Defender_Conj p Q) e
= Some e’›

‹ e’ = e - (E 0 0 0 1 0 0 0 0)›
‹ spectro_att_wins e’ (Defender_Conj p Q)›
using cases local.empty_stbl_conj_answer
by (smt (verit, best) option.discI option.sel)

then obtain Φ where Φ_prop: ‹ strategy_formula_inner (Defender_Conj p Q) e’ (Conj Q Φ)›
using conj True by blast

hence strategy: ‹ strategy_formula_inner (Defender_Stable_Conj p Q) e (StableConj Q Φ)›
by (simp add: True stable_conj)

have ‹ E 0 0 0 1 0 0 0 0 ≤ e› using e’_spec
using option.sel True by fastforce

moreover have ‹ expr_pr_inner (StableConj Q Φ) = E 0 0 0 1 0 0 0 0›
using True by (simp add: bot_enat_def)

ultimately have ‹ expr_pr_inner (StableConj Q Φ) ≤ e› by simp
with strategy show ?thesis by auto

next
case False
then obtain e’ where e’_spec:

‹ e’ = e - (E 0 0 0 1 0 0 0 0)›
‹ ∀ q ∈ Q. weak_spectroscopy_game.weight (Defender_Stable_Conj p Q)

(Attacker_Conjunct p q) e = Some e’
∧ spectro_att_wins e’ (Attacker_Conjunct p q)›

using cases local.conj_s_answer
by (smt (verit, del_insts) option.distinct(1) option.sel)

hence IH: ‹ ∀ q ∈ Q. ∃ψ.
strategy_formula_conjunct (Attacker_Conjunct p q) e’ ψ ∧
expr_pr_conjunct ψ ≤ e’›
using Defender_Stable_Conj local.conj_s_answer
by (smt (verit, best) option.distinct(1) option.inject spectroscopy_position.simps(52))

hence ‹ ∃Φ. ∀ q ∈ Q.
strategy_formula_conjunct (Attacker_Conjunct p q) e’ (Φ q) ∧
expr_pr_conjunct (Φ q) ≤ e’›
by meson

then obtain Φ where Φ_prop: ‹ ∀ q ∈ Q.
strategy_formula_conjunct (Attacker_Conjunct p q) e’ (Φ q)
∧ expr_pr_conjunct (Φ q) ≤ e’›
by blast
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have ‹ E 0 0 0 1 0 0 0 0 ≤ e›
using e’_spec False by fastforce

hence ‹ expr_pr_inner (StableConj Q Φ) ≤ e›
using expr_st_conj e’_spec Φ_prop False by metis

moreover have ‹ strategy_formula_inner (Defender_Stable_Conj p Q) e (StableConj Q Φ)›
using Φ_prop e’_spec stable_conj
unfolding e’_spec by fastforce

ultimately show ?thesis by auto
qed

qed force+
qed

lemma strategy_formulas_distinguish:
shows

‹ (strategy_formula g e ϕ −→
(case g of

Attacker_Immediate p Q ⇒ distinguishes_from ϕ p Q
| Defender_Conj p Q ⇒ distinguishes_from ϕ p Q
| _ ⇒ True))
∧
(strategy_formula_inner g e χ −→
(case g of

Attacker_Delayed p Q ⇒ (Q →→S Q) −→ distinguishes_from (Internal χ) p Q
| Defender_Conj p Q ⇒ hml_srbb_inner.distinguishes_from χ p Q
| Defender_Stable_Conj p Q ⇒ (∀ q. ¬ p 7→ τ q)

−→ hml_srbb_inner.distinguishes_from χ p Q
| Defender_Branch p α p’ Q Qa ⇒(p 7→a α p’)

−→ hml_srbb_inner.distinguishes_from χ p (Q∪Qa)
| _ ⇒ True))
∧
(strategy_formula_conjunct g e ψ −→

(case g of
Attacker_Conjunct p q ⇒ hml_srbb_conj.distinguishes ψ p q

| _ ⇒ True))›
proof(induction rule: strategy_formula_strategy_formula_inner_strategy_formula_conjunct.induct)

case (delay p Q e χ)
then show ?case

by (smt (verit) distinguishes_from_def option.discI silent_reachable.intros(1)
silent_reachable_trans spectroscopy_moves.simps(1) spectroscopy_position.simps)

next
case (procrastination p Q e χ)
from this obtain p’ where IH:

‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Delayed p’ Q) = id_up ∧
spectro_att_wins e (Attacker_Delayed p’ Q) ∧
strategy_formula_inner (Attacker_Delayed p’ Q) e χ ∧
(case Attacker_Delayed p’ Q of Attacker_Delayed p Q ⇒

Q →→S Q −→ distinguishes_from (hml_srbb.Internal χ) p Q |
Defender_Branch p α p’ Q Qa ⇒ p 7→α p’ ∧ Qa 6= {}
−→ hml_srbb_inner.distinguishes_from χ p (Q ∪ Qa) |

Defender_Conj p Q ⇒ hml_srbb_inner.distinguishes_from χ p Q |
Defender_Stable_Conj p Q ⇒ (∀ q. ¬ p 7→τ q)
−→ hml_srbb_inner.distinguishes_from χ p Q |

_ ⇒ True)› by fastforce
hence D: ‹ Q →→S Q −→ distinguishes_from (hml_srbb.Internal χ) p’ Q›

using spectroscopy_position.simps(53) by fastforce
from IH have ‹ p →→p’›

by (metis option.discI silent_reachable.intros(1)
silent_reachable_append_τ spectroscopy_moves.simps(2))

hence ‹ Q →→S Q −→ distinguishes_from (hml_srbb.Internal χ) p Q› using D
by (smt (verit) silent_reachable_trans distinguishes_from_def hml_srbb_models.simps(2))

then show ?case by simp
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next
case (observation p Q e ϕ α)
then obtain p’ Q’ where IH:

‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= subtract 1 0 0 0 0 0 0 0 ∧

spectro_att_wins (e - E 1 0 0 0 0 0 0 0) (Attacker_Immediate p’ Q’) ∧
(strategy_formula (Attacker_Immediate p’ Q’) (e - E 1 0 0 0 0 0 0 0) ϕ ∧
(case Attacker_Immediate p’ Q’ of Attacker_Immediate p Q ⇒ distinguishes_from ϕ p Q
| Defender_Conj p Q ⇒ distinguishes_from ϕ p Q | _ ⇒ True)) ∧

p 7→a α p’ ∧ Q 7→aS α Q’› by auto
hence D: ‹ distinguishes_from ϕ p’ Q’› by auto
hence ‹ p’ |=SRBB ϕ› by auto
have observation: ‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)

= (if (∃ a. p 7→a a p’ ∧ Q 7→aS a Q’) then (subtract 1 0 0 0 0 0 0 0) else None)›
for p p’ Q Q’ by simp

from IH have ‹ spectroscopy_moves (Attacker_Delayed p Q) (Attacker_Immediate p’ Q’)
= subtract 1 0 0 0 0 0 0 0› by simp

also have ‹ ... 6= None› by blast
finally have ‹ (∃ a. p 7→a a p’ ∧ Q 7→aS a Q’)› unfolding observation by metis
from IH have ‹ p 7→a α p’› and ‹ Q 7→aS α Q’› by auto
hence P: ‹ p |=SRBB (Internal (Obs α ϕ))› using ‹ p’ |=SRBB ϕ›

using silent_reachable.intros(1) by auto
have ‹ Q →→S Q −→ (∀ q∈Q. ¬(q |=SRBB (Internal (Obs α ϕ))))›

by (simp, meson D ‹ Q 7→aS α Q’› distinguishes_from_def)
hence ‹ Q →→S Q −→ distinguishes_from (hml_srbb.Internal (hml_srbb_inner.Obs α ϕ)) p Q›

using P by fastforce
then show ?case by simp

next
case (early_conj Q p Q’ e ϕ)
then show ?case

by (simp, metis not_None_eq)
next

case (late_conj p Q e χ)
then show ?case

using silent_reachable.intros(1)
by auto

next
case (conj Q p e Φ)
then show ?case by auto

next
case (imm_conj Q p e Φ)
then show ?case by auto

next
case (pos p q e χ)
then show ?case using silent_reachable.refl

by (simp) (metis option.discI silent_reachable_trans)
next

case (neg p q e χ)
then obtain P’ where IH:

‹ spectroscopy_moves (Attacker_Conjunct p q) (Attacker_Delayed q P’)
= Some (λe. Option.bind (subtract_fn 0 0 0 0 0 0 0 1 e) min1_7)›

‹ spectro_att_wins (the (min1_7 (e - E 0 0 0 0 0 0 0 1))) (Attacker_Delayed q P’) ∧
strategy_formula_inner (Attacker_Delayed q P’)

(the (min1_7 (e - E 0 0 0 0 0 0 0 1))) χ ∧
(case Attacker_Delayed q P’ of

Attacker_Delayed p Q ⇒ Q →→S Q −→ distinguishes_from (hml_srbb.Internal χ) p Q
| Defender_Branch p α p’ Q Qa
⇒ p 7→α p’ ∧ Qa 6= {} −→ hml_srbb_inner.distinguishes_from χ p (Q ∪ Qa)

| Defender_Conj p Q ⇒ hml_srbb_inner.distinguishes_from χ p Q
| Defender_Stable_Conj p Q
⇒ (∀ q. ¬ p 7→τ q) −→ hml_srbb_inner.distinguishes_from χ p Q
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| _ ⇒ True)› by fastforce
hence D: ‹ P’ →→S P’ −→ distinguishes_from (hml_srbb.Internal χ) q P’› by simp
have ‹ {p} →→S P’› using IH(1) spectroscopy_moves.simps

by (metis (no_types, lifting) not_Some_eq)
have ‹ P’ →→S P’ −→ p ∈ P’› using ‹ {p} →→S P’› by (simp add: silent_reachable.intros(1))
hence ‹ hml_srbb_conj.distinguishes (hml_srbb_conjunct.Neg χ) p q› using D ‹ {p} →→S P’›

unfolding hml_srbb_conj.distinguishes_def distinguishes_from_def
by (smt (verit) lts_tau.silent_reachable_trans hml_srbb_conjunct_models.simps(2)

hml_srbb_models.simps(2) silent_reachable.refl)
then show ?case by simp

next
case (stable p Q e χ)
then obtain Q’ where IH:

‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Stable_Conj p Q’) = id_up›
‹ spectro_att_wins e (Defender_Stable_Conj p Q’) ∧
strategy_formula_inner (Defender_Stable_Conj p Q’) e χ ∧
(case Defender_Stable_Conj p Q’ of

Attacker_Delayed p Q ⇒ Q →→S Q −→ distinguishes_from (hml_srbb.Internal χ) p Q
| Defender_Branch p α p’ Q Qa
⇒ p 7→α p’ ∧ Qa 6= {} −→ hml_srbb_inner.distinguishes_from χ p (Q ∪ Qa)

| Defender_Conj p Q
⇒ hml_srbb_inner.distinguishes_from χ p Q

| Defender_Stable_Conj p Q
⇒ (∀ q. ¬ p 7→τ q) −→ hml_srbb_inner.distinguishes_from χ p Q

| _ ⇒ True)› by auto
hence ‹ (@ p’’. p 7→τ p’’)›

by (metis local.late_stbl_conj option.distinct(1))
from IH have ‹ (∀ q. ¬ p 7→τ q) −→ hml_srbb_inner.distinguishes_from χ p Q’› by simp
hence ‹ hml_srbb_inner.distinguishes_from χ p Q’› using ‹ @ p’’. p 7→τ p’’› by auto
hence ‹ hml_srbb_inner_models p χ› by simp
hence ‹ p |=SRBB (hml_srbb.Internal χ)›

using lts_tau.refl by force
have ‹ Q →→S Q −→ distinguishes_from (hml_srbb.Internal χ) p Q›
proof

assume ‹ Q →→S Q›
have ‹ (∀ q ∈ Q. ¬(q |=SRBB (hml_srbb.Internal χ)))›
proof (clarify)

fix q
assume ‹ q ∈ Q› ‹ (q |=SRBB (hml_srbb.Internal χ))›
hence ‹ ∃ q’. q →→ q’ ∧ hml_srbb_inner_models q’ χ› by simp
then obtain q’ where X: ‹ q →→ q’ ∧ hml_srbb_inner_models q’ χ› by auto
hence ‹ q’ ∈ Q› using ‹ Q →→S Q› ‹ q ∈ Q› by blast
then show ‹ False›
proof (cases ‹ q’ ∈ Q’› )

case True — stable cases
thus ‹ False› using X ‹ hml_srbb_inner.distinguishes_from χ p Q’›

by simp
next

case False — unstable cases
from IH have ‹ strategy_formula_inner (Defender_Stable_Conj p Q’) e χ› by simp
hence ‹ ∃Φ. χ = StableConj Q’ Φ› using strategy_formula_inner.simps

by (smt (verit) spectroscopy_defender.simps(4,7)
spectroscopy_position.distinct(37,41) spectroscopy_position.inject(6))

then obtain Φ where P: ‹χ = (StableConj Q’ Φ)› by auto
from IH(1) have ‹ Q’ = {q ∈ Q. (@ q’. q 7→τ q’)}›

by (metis (full_types) local.late_stbl_conj option.distinct(1))
hence ‹ ∃ q’’. q’ 7→τ q’’› using False ‹ q’ ∈ Q› by simp
from X have ‹ hml_srbb_inner_models q’ (StableConj Q’ Φ)› using P by auto
then show ?thesis using ‹ ∃ q’’. q’ 7→τ q’’› by simp

qed
qed
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thus ‹ distinguishes_from (hml_srbb.Internal χ) p Q›
using ‹ p |=SRBB (hml_srbb.Internal χ)› by simp

qed
then show ?case by simp

next
case (stable_conj Q p e Φ)
hence IH: ‹ ∀ q∈ Q. hml_srbb_conj.distinguishes (Φ q) p q› by simp
hence Q: ‹ ∀ q ∈ Q. hml_srbb_conjunct_models p (Φ q)› by simp
hence ‹ (∀ q. ¬ p 7→τ q) −→ hml_srbb_inner.distinguishes_from (StableConj Q Φ) p Q›

using IH by auto
then show ?case by simp

next
case (branch p Q e χ)
then obtain p’ Q’ α Qα where IH:

‹ spectroscopy_moves (Attacker_Delayed p Q) (Defender_Branch p α p’ Q’ Qα) = id_up›
‹ spectro_att_wins e (Defender_Branch p α p’ Q’ Qα) ∧
strategy_formula_inner (Defender_Branch p α p’ Q’ Qα) e χ ∧
(case Defender_Branch p α p’ Q’ Qα of

Attacker_Delayed p Q ⇒ Q →→S Q −→ distinguishes_from (Internal χ) p Q
| Defender_Branch p α p’ Q Qa
⇒ p 7→a α p’ −→ hml_srbb_inner.distinguishes_from χ p (Q ∪ Qa)

| Defender_Conj p Q ⇒ hml_srbb_inner.distinguishes_from χ p Q
| Defender_Stable_Conj p Q
⇒ (∀ q. ¬ p 7→τ q) −→ hml_srbb_inner.distinguishes_from χ p Q

| _ ⇒ True)› by blast
from IH(1) have ‹ p 7→a α p’›

by (metis local.br_conj option.distinct(1))
from IH have ‹ p 7→a α p’ −→ hml_srbb_inner.distinguishes_from χ p (Q’ ∪ Qα)› by simp
hence D: ‹ hml_srbb_inner.distinguishes_from χ p (Q’ ∪ Qα)› using ‹ p 7→a α p’› by auto
from IH have ‹ Q’ = Q - Qα ∧ p 7→a α p’ ∧ Qα ⊆ Q›

by (metis (no_types, lifting) br_conj option.discI)
hence ‹ Q=(Q’ ∪ Qα)› by auto
then show ?case

using D silent_reachable.refl by auto
next

case (branch_conj p α p’ Q1 Qα e ψ Φ)
hence A1: ‹ ∀ q∈Q1. hml_srbb_conjunct_models p (Φ q)› by simp
from branch_conj obtain Q’ where IH:

‹ spectroscopy_moves (Defender_Branch p α p’ Q1 Qα) (Attacker_Branch p’ Q’)
= Some (λe. Option.bind (subtract_fn 0 1 1 0 0 0 0 0 e) min1_6)›

‹ spectroscopy_moves (Attacker_Branch p’ Q’) (Attacker_Immediate p’ Q’)
= subtract 1 0 0 0 0 0 0 0 ∧

spectro_att_wins (the (min1_6 (e - E 0 1 1 0 0 0 0 0)) - E 1 0 0 0 0 0 0 0)
(Attacker_Immediate p’ Q’) ∧

strategy_formula (Attacker_Immediate p’ Q’)
(the (min1_6 (e - E 0 1 1 0 0 0 0 0)) - E 1 0 0 0 0 0 0 0) ψ ∧

(case Attacker_Immediate p’ Q’ of
Attacker_Immediate p Q ⇒ distinguishes_from ψ p Q

| Defender_Conj p Q ⇒ distinguishes_from ψ p Q | _ ⇒ True)› by auto
hence ‹ distinguishes_from ψ p’ Q’› by simp
hence X: ‹ p’ |=SRBB ψ› by simp
have Y: ‹ ∀ q ∈ Q’. ¬(q |=SRBB ψ)› using ‹ distinguishes_from ψ p’ Q’› by simp
have ‹ p 7→a α p’ −→ hml_srbb_inner.distinguishes_from (BranchConj α ψ Q1 Φ) p (Q1 ∪ Qα)›
proof

assume ‹ p 7→a α p’›
hence ‹ p 7→a α p’› by simp
with IH(1) have ‹ Qα 7→aS α Q’›

by (simp, metis option.discI)
hence A2: ‹ hml_srbb_inner_models p (Obs α ψ)› using X ‹ p 7→a α p’› by auto
have A3: ‹ ∀ q ∈ (Q1 ∪ Qα). hml_srbb_inner.distinguishes (BranchConj α ψ Q1 Φ) p q›
proof (safe)
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fix q
assume ‹ q ∈ Q1›
hence ‹ hml_srbb_conj.distinguishes (Φ q) p q› using branch_conj(2) by simp
thus ‹ hml_srbb_inner.distinguishes (BranchConj α ψ Q1 Φ) p q›

using A1 A2 srbb_dist_conjunct_or_branch_implies_dist_branch_conjunction ‹ q ∈ Q1›
by blast

next
fix q
assume ‹ q ∈ Qα›
hence ‹¬(hml_srbb_inner_models q (Obs α ψ))›

using Y ‹ Qα 7→aS α Q’› by auto
hence ‹ hml_srbb_inner.distinguishes (Obs α ψ) p q›

using A2 by auto
thus ‹ hml_srbb_inner.distinguishes (BranchConj α ψ Q1 Φ) p q›

using A1 A2 srbb_dist_conjunct_or_branch_implies_dist_branch_conjunction by blast
qed
have ‹ hml_srbb_inner_models p (BranchConj α ψ Q1 Φ)›

using A3 A2 by fastforce
with A3 show ‹ hml_srbb_inner.distinguishes_from (BranchConj α ψ Q1 Φ) p (Q1 ∪ Qα)›

by simp
qed
then show ?case by simp

qed

end

end

9.3 Correctness Theorem
theory Silent_Step_Spectroscopy

imports
Distinction_Implies_Winning_Budgets
Strategy_Formulas

begin

We now only combine the results of Distinction_Implies_Winning_Budgets and Strategy_Formulas
to obtain the main characterization theorem of the weak spectroscopy game characterizing a whole
spectrum of weak equivalences.
context lts_tau
begin

theorem spectroscopy_game_correctness:
fixes e p Q
shows ‹ (∃ϕ. distinguishes_from ϕ p Q ∧ expressiveness_price ϕ ≤ e)

←→ spectro_att_wins e (Attacker_Immediate p Q)›
proof

assume ‹ ∃ϕ. distinguishes_from ϕ p Q ∧ expressiveness_price ϕ ≤ e›
then obtain ϕ where ϕ_spec:

‹ distinguishes_from ϕ p Q› ‹ expressiveness_price ϕ ≤ e›
by blast

from distinction_implies_winning_budgets ϕ_spec(1) have
‹ spectro_att_wins (expressiveness_price ϕ) (Attacker_Immediate p Q)› .

thus ‹ spectro_att_wins e (Attacker_Immediate p Q)›
using weak_spectroscopy_game.win_a_upwards_closure ϕ_spec(2) by simp

next
assume ‹ spectro_att_wins e (Attacker_Immediate p Q)›
with winning_budget_implies_strategy_formula have

‹ ∃ϕ. strategy_formula (Attacker_Immediate p Q) e ϕ ∧ expressiveness_price ϕ ≤ e›
by force

hence ‹ ∃ϕ. strategy_formula (Attacker_Immediate p Q) e ϕ ∧ expressiveness_price ϕ ≤ e›

111



by blast
thus ‹ ∃ϕ. distinguishes_from ϕ p Q ∧ expressiveness_price ϕ ≤ e›

using strategy_formulas_distinguish by fastforce
qed

An implicit result of the correctness theorem is that attacker wins on bigger Q imply wins on smaller
ones.
proposition attacker_subet_wins:

assumes
‹ spectro_att_wins e (Attacker_Immediate p Q)›
‹ Q’ ⊆ Q›

shows
‹ spectro_att_wins e (Attacker_Immediate p Q’)›

using assms spectroscopy_game_correctness
unfolding distinguishes_from_def subset_iff
by meson

end

end
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