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1 Labeled Transition Systems

theory Labeled_Transition_Systems

imports

Main

begin
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1.1 Labeled Transition Systems

A locale for Labeled Transition Systems, parameterized over action type ’a and state
type ’s.

locale 1lts =
fixes step :: <’s = ’a = ’s = bool>
(<_ +——>_ _> [70, 70, 70] 80)
begin

Example definitions for derivatives and deadlock.

abbreviation derivatives :: <’s = ’a = ’s set>
where <derivatives p a = {p’. p —a p’}>

abbreviation deadlocked :: <’s = bool>
where <deadlocked s = V. derivatives s o = {}>

definition image_finite :: <bool>
where <image_finite = (V p «. finite (derivatives p «))>

1.2 Paths and Traces
Step sequences as inductive definition

Teaching Hint: Inductive definitions!

inductive step_sequence :: <’s = ’a list = ’s = bool>
("_ ¢ _ _" [70, 70, 70] 80)
where

srefl: <p —$ [1 p> |
sstep: <p +—$ (a#tr) p’’> if <dp’. pr+—— ap’ A p’ +—$ tr p’’?>

Traces as enabled step sequences

abbreviation traces :: <’s = ’a list set>
where <traces p = {tr. dp’. p —$ tr p’}>

lemma empty_trace_trivial:
fixes p
shows <[] € traces p>
using step_sequence.srefl by blast

inductive path :: <’s list = bool>
where
init: <path [p]> |
step: <path (p # (p’ # pp))> if <Ja. p — a p’ A path (p’ # pp)>

lemma no_empty_paths:
assumes <path []>
shows <False>
using assms path.cases by blast

lemma path_implies_trace:
assumes <path pp>
shows <3dtr. (hd pp) —$ tr (last pp)>
using assms
proof induct
case (init p)
then show 7case using step_sequence.srefl by force



next

case (step p p’ pp)
then show 7case by (metis last_ConsR list.distinct(1) list.sel(l) step_sequence.simps)

qed

lemma trace_implies_path:
assumes <p ——$ tr p’>
shows <dpp. path pp A hd pp = p A last pp = p’>
using assms
proof induct
case (srefl p)
then show 7case using path.init by fastforce
next
case (sstep p a tr p’’)
then show 7case by (metis last.simps list.collapse list.sel(l) no_empty_paths
path.step)
qed

end — of locale 1lts

1.3 Transition Systems with Internal Behavior

locale lts_tau =
1lts step
for
step :: <’s = ’a = ’s = bool> (<_ +—_ _> [70, 70, 70] 80) +
fixes
T :: ’a
begin

Define silent-reachability —» and prove its transitivity

inductive silent_reachable :: <’s = ’s = bool> (infix <—»> 80) where
refl: <p —» p> |
step: <p — p’’> if <p —— 7 p’> and <p’ —» p’’>

thm silent_reachable.induct

lemma silent_reachable_compose:
fixes
p pJ p)J
assumes
<p —» p’>
<p’ — p”>
shows
<p —» p”>
using assms
proof induct
fix p
assume <p —» p’’>
thus <p — p’’>
next
fix p p) p)J)
assume <P '—>T p7> <p)77 % p?! ﬁ p! % p))> <p))) % p))>
from this(2,3) have <p’ —» p’’>
with silent_reachable.step <p ——7 p’> show <p —» p’’>



qed

lemma silent_reachable_preorder:
<reflp (—»)>
<transp (—»)>
using silent_reachable.refl silent_reachable_compose
unfolding reflp_def transp_def by blast+

A weak step —»— is — wrapped in —» (or just —» for 7)

definition weak_step (<_ —»— _ _> [70,70,70] 80) where
<p —»— a p’’’ =
if « = 7 then p — p’’’ else
(Hp; p:7.p%_>pz/\p7,_>ap;: /\p:7%P7;:)>

weak step sequence —»+—$ and traces analogous to strong steps.

inductive weak_step_sequence :: <’s = ’a list = ’s = bool>
("_ —»—$ _ _" [70, 70, 70] 80)
where

internal: <p —+—$ [] p’> if <p — p’> |
step: <p —»—$ (adttr) p’’> if <dp’. p »— a p’ A p’ —»—$ tr p’’>

abbreviation weak_traces :: <’s = ’a list set>
where <weak_traces p = {tr. dp’. p =-»—$ tr p’}>

lemma empty_weak_trace_trivial:
fixes p
shows <[] € weak_traces p>
using weak_step_sequence.internal silent_reachable.refl by blast

lemma weak_seq_tau_transparent:
assumes <p —»—$ tr p’>
shows <p —»—$ (filter (Aa. a # 7) tr) p’>
using assms
proof (induct tr arbitrary: p p’)
case Nil
then show 7case by simp
next
case (Cons a tr p p’’)
from this(2) obtain p’ where stepl: <p —»— «a p’> <p’ —»—$ tr p’’>
using weak_step_sequence.cases by force
then have step2: <p’ —»—$ (filter (Aa. « # 7) tr) p’’> using Cons(1l) by blast
show 7case
proof (cases <a # 7>)
case True
then show 7thesis using stepl(l) step2
using weak_step_sequence.step by fastforce
next
case False
hence <a = 7> by blast
hence <p —» p’> using stepl(1l) unfolding weak_step_def by auto
hence <p —»+—$ tr p’’> using stepl(2) weak_step_def silent_reachable_compose
by (smt (verit, best)
weak_step_sequence.internal weak_step_sequence.cases weak_step_sequence.step)
hence <p —»—$ (filter (Aa. o # 7) tr) p’’> using Cons.hyps by blast
then show 7thesis using <a = 7> by auto
qed



qed
end

end

2 Strong Equivalences

theory Strong_Equivalences
imports Labeled_Transition_Systems
begin

context 1lts begin

2.1 Trivial notions of equality

2.1.1 Identity

definition identical :: <’s = ’s = bool>
where <identical p q = p = g>

It’s reflexive

lemma identical_reflexive:
shows <identical p p>
unfolding identical_def using refl .

lemma non_identity:
assumes <p # Q>
shows <— identical p g>
using assms unfolding identical_def

It’s an equivalence.

lemma identity_equivalence:
shows <equivp identical>
proof (rule equivpI)

show <reflp identical> unfolding reflp_def using alll identical_reflexive .

next
show <symp identical> unfolding symp_def
proof (rule+)
fix xy
assume <identical x y>
then have <x = y> unfolding identical_def
with sym have <y = x>
then show <identical y x> unfolding identical_def
qed
next
show <transp identical~>
unfolding transp_def identical_def by blast
qed

2.1.2 Universal equality

definition universal_equal :: <’s = ’s = bool>
where <universal_equal p q = True>

lemma universal_equal_equivalence:



shows <equivp universal_equal>
unfolding equivp_def universal_equal_def by simp

2.2 Trace Equality

Trace preorder as inclusion of trace sets

definition trace_preordered :: <’s = ’s = bool> (infix <<T> 80) where
<p <T q = traces p C traces q>

Trace equivalence as mutual preorder

abbreviation trace_equivalent (infix <~T> 80) where
<p~Tq=pSTqAqXsTp

Trace preorder is transitive

lemma trace_preorder_transitive:
shows <transp (<T)»
unfolding trace_preordered_def
by (standard, blast)

lemma trace_equivalence_equiv:
shows <equivp trace_equivalent>
proof (rule equivpI)
show <transp trace_equivalent>
using trace_preorder_transitive
unfolding transp_def
by blast
next
show <reflp trace_equivalent>
unfolding reflp_def trace_preordered_def by blast
next
show <symp trace_equivalent~>
unfolding symp_def trace_preordered_def by blast
qed

2.3 Isomorphism

definition isomorphism :: <(’s = ’s) = bool>
where <isomorphism f = bij £f A (Vp p’ a. p+—> ap’ +<— (f p) —> a (f p’))>

definition is_isomorphic_to (infix <=~IS0> 80)
where <p ~IS0 q = 3f. £ p = q A isomorphism f>

Isomorphism yields an equivalence

lemma iso_equivalence_equiv:
shows <equivp is_isomorphic_to~>
proof (rule equivpI)
show <reflp is_isomorphic_to>
unfolding reflp_def is_isomorphic_to_def isomorphism_def by (metis bij_id id_apply)
next
show <symp is_isomorphic_to>
unfolding symp_def is_isomorphic_to_def isomorphism_def by (metis (no_types,
opaque_lifting) bij_iff)
next
show <transp is_isomorphic_to>
unfolding transp_def is_isomorphic_to_def



proof safe
fix p f1 £2
assume <isomorphism f1> <isomorphism £f2>

then have <isomorphism (f2 o f1)> unfolding isomorphism_def using bij_comp

by auto

then show <3Jfb. fb p = £f2 (f1 p) A isomorphism fb> unfolding comp_def by auto

qed
qed

Isomorphism equivalence is closed under steps (i.e. isomorphism equivalence is a sim-

ulation, but we have not yet defined this notion.)

lemma iso_sim:
assumes
<is_isomorphic_to p g~
<p— ap’>
shows <3q’. q —> a g’ A is_isomorphic_to p’ q’>
using assms unfolding is_isomorphic_to_def isomorphism_def by blast

Isomorphic states have the same traces.

Teaching hint: Inductive proofs

lemma iso_implies_trace_preord:
assumes <is_isomorphic_to p g>
shows <trace_preordered p g~
unfolding trace_preordered_def
proof safe
fix tr p’
assume <p —$tr p’>
thus <dp’. q —$tr p’> using assms
proof (induct tr arbitrary: p q p’)
case Nil
then show 7case using empty_trace_trivial by blast
next
case (Cons a tr p q p’)
from <p —$(a # tr) p’>
obtain p’’ where <p ——a p’’> <p’’ 8§ tr p’>
by (cases, auto)
then show 7case
using iso_sim[0F <is_isomorphic_to p q> <p ——a p’’>]
Cons(1) sstep by blast
gqed
qed
— Actually, this is more like a corollary of later lemmas.

corollary iso_implies_trace_eq:
assumes <is_isomorphic_to p g~
shows <trace_equivalent p g~
using assms iso_implies_trace_preord iso_equivalence_equiv
unfolding equivp_def by simp

2.4 Simulation preorder and equivalence

Two states are simulation preordered if they can be related by a simulation relation.

definition simulation
where <simulation R =
Vpqap’.p+—ap ARpq — (dq’. q+— aq’ ARPpP’ q)>



definition simulated_by (infix <<S»> 80)
where <p <S q = JR. R p g9 A simulation R>

abbreviation similar (infix <~S> 80)
where <p ~S q =p <Sq A q <S8 p>»

lemma id_sim:
shows <simulation identical>
unfolding simulation_def identical_def by blast

lemma simulation_composition:
assumes
<simulation R1>
<simulation R2>
shows
<simulation (Ap q. dp’. R1 p p’ A R2 p’ q)>
using assms unfolding simulation_def by blast

lemma simulation_union:
assumes
<simulation R1>
<simulation R2>
shows
<simulation (Ap q. R1 pq V R2 p q)>
using assms unfolding simulation_def by blast

lemma simulation_preorder_transitive:
shows <transp (<S)»
unfolding transp_def simulated_by_def
using simulation_composition
by (metis (mono_tags, lifting))

lemma iso_is_sim:
shows <simulation is_isomorphic_to>
using iso_sim unfolding simulated_by_def simulation_def by blast

corollary iso_implies_sim:
assumes <1is_isomorphic_to p g>
shows <simulated_by p q°
using assms iso_is_sim unfolding simulated_by_def by blast

lemma sim_implies_trace_preord:
assumes <p <S g>
shows <p <T q»
unfolding trace_preordered_def
proof safe
fix tr p’
assume <p ——$tr p’>
thus <dp’. q —$tr p’> using assms
proof (induct tr arbitrary: p q p’)
case Nil
then show 7case using empty_trace_trivial by blast
next
case (Cons a tr p q p’)
from <p —$(a # tr) p’>



obtain p’’ where p’’_spec: <p ——a p’’> <p’’ +——$ tr p’>
by (cases, auto)

then obtain R q’ where <simulation R> <R p q> <R p’’ q’>
using Cons unfolding simulated_by_def simulation_def by blast

then show 7case
using Cons step_sequence.sstep p’’_spec

simulated_by_def simulation_def by metis
qed
qed

lemma sim_eq_implies_trace_eq:
assumes <p ~S g’
shows <p ~T g~
using assms sim_implies_trace_preord by blast

Two states are bisimilar if they can be related by a symmetric simulation.

definition bisimilar (infix <~B> 80) where
<bisimilar p q = JR. simulation R A symp R A R p g>

Bisimilarity is a simulation.

lemma bisim_sim:
shows <simulation bisimilar>
unfolding bisimilar_def simulation_def by blast

lemma bisimilarity_equiv:
shows <equivp (~B)>
proof (rule equivpI)
show <reflp (~B)>
using id_sim DEADID.rel_symp
unfolding bisimilar_def identical_def
by (metis (mono_tags, lifting) reflpI)
next
show <symp (~B)>
unfolding bisimilar_def
by (smt (verit, best) sympE sympI)
next
show <transp (~B)>
unfolding transp_def bisimilar_def
proof safe
fix p p’ q R1 R2
assume case_assms:
<simulation R1> <symp R1> <R1 p p’>
<simulation R2> <symp R2> <R2 p’ qg>
hence <simulation (Ap q. (Ip’. R1 pp’ AR2p’ q@ V (dp’. R2 p p’ ARL p’
Q>
using simulation_composition simulation_union by blast
moreover have
<symp (Ap q. (Ip’. Rl pp’ AR2p’ q V (dp’. R2 pp’ ARL P’ @)
using case_assms(2,5) unfolding symp_def by blast
ultimately show <3R. simulation R A symp R A R p g>
using case_assms(3,6) by blast
qed
qed

Bisimilarity is a bisimulation.



lemma bisim_bisim:
shows <simulation bisimilar A symp bisimilar>
using bisim_sim bisimilarity_equiv equivpE by blast

lemma bisim_implies_sim:
assumes <p ~B q>
shows <p ~S q”>
using assms bisim_bisim
unfolding simulated_by_def
by (metis sympE)

lemma iso_implies_bisim:
assumes <p ~ISO g>
shows <p ~B g~
using assms iso_is_sim equivpE[OF iso_equivalence_equiv] bisimilar_def by blast

end

end

3 Hennessy—Milner Logic

theory Hennessy_Milner_Logic
imports

LTS_Semantics
begin

HML formulas can be the trivial formula, conjunctions, negations and observations of
possible transitions.

datatype (’a,’i) hml_formula =

HML_true
| HML_conj <’i set> <’i = (’a,’i) hml_conjunct> (<AND _ _>)
| HML_obs <’a> <(’a,’i) hml_formula> (<{_)_> [60] 60)
and (’a,’i) hml_conjunct =
HML_pos < (’a,’i) hml_formula> (<+_> [20] 60)
| HML_neg <(’a,’i) hml_formula> (<-_> [20] 60)

context 1lts
begin

The model relation

primrec satisfies :: <’s = (’a, ’s) hml_formula = bool> (<_ E _> [50, 50]
40)

and satisfies_conj :: <’s = (’a, ’s) hml_conjunct = bool>

where

<(p | HML_true) = True> |

<(p E HML_conj I F) = (V i € I. satisfies_conj p (F 1))> |
<(p EHML_obs o ¢) = (3 p’. pr—ap Ap E > |
<satisfies_conj p (HML_pos ¢) = (p F ¢)> |

<satisfies_conj p (HML_neg ¢) = (—p E ¢)>

interpretation hml: lts_semantics where satisfies = satisfies
by unfold_locales

interpretation hml_conj: lts_semantics where satisfies = satisfies_conj
by unfold_locales
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abbreviation hml_entails (infixr "=" 60) where <hml_entails = hml.entails>
abbreviation hml_logical_eq (infix "&=" 60) where <hml_logical_eq = hml.logical_eq>

abbreviation hml_conj_entails (infixr "A=" 60) where <hml_conj_entails = hml_conj.entails>
abbreviation hml_conj_logical_eq (infix "&A=" 60) where <hml_conj_logical_eq =
hml_conj.logical_eq”>

declare lts_semantics.entails_def [simp]
declare lts_semantics.eq_equality[simp]

abbreviation <HML_conj_neg ¢ = (AND {undefined} (Ai. HML_neg ¢))>
abbreviation <HML_conj_pos ¢ = (AND {undefined} (Ai. HML_pos ¢))>

lemma distinguishes_invertible:
assumes <hml.distinguishes ¢ p q>
shows <hml.distinguishes (HML_conj_neg ¢) q p°>
using assms by auto

lemma conjunction_wrapping:
shows <p &= (HML_conj_pos ¢) +— p E ¢>
by auto

If two states are not HML equivalent then there must be a distinguishing formula.

lemma hml _distinctions:
assumes <— hml.equivalent O p g>
shows <Jde. hml.distinguishes ¢ p q>
using assms distinguishes_invertible
unfolding hml.equivalent_def hml.preordered_no_distinction
by blast

end

end

4 Reachability Games

theory Equivalence_Games
imports Strong_Equivalences
begin

A game is an unlabeled graph where vertices are partitioned into defender and attacker
positions.

locale game =

fixes
game_move :: <’g = ’g = bool> (infix <>—> 80) and
defender_position :: <’g = bool>
begin

abbreviation <attacker_position g = —defender_position g>
abbreviation <options g = {g’. g — g’}>

Each player loses at a position if it were their turn but they are stuck.

definition <defender_loses g = defender_position g A options g = {}>
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definition <attacker_loses g = attacker_position g A options g = {}>

A (positional) strategy is a function to select among the options at a position. That
only possible moves are valid choices cannot be expressed in a HOL type. We express
this by soundness predicates for attacker/defender strategies.

type_synonym (’g0) strategy = <’g0 = ’g0>

definition <sound_defender_strategy strat g =

defender_position g A options g # {} — strat g € options g>
definition <sound_attacker_strategy strat g =

attacker_position g A options g # {} — strat g € options g>

A play (fragment) is a sequence of game positions that follow a path of game moves.

inductive play :: <’g list = bool> where
init: <play [g]l> |
step: <play (g # (g’ # gg))> if <g — g’> <play (g’ # gg)>

We have defined plays in a way where there are no empty plays.

lemma no_empty_play:
assumes <play []>
shows <False>
using assms play.cases by blast

A play follows a defender strategy if every every defender-controlled move obeys the
strategy. (The type here, does not really ensure the position sequences to be plays and
the strategies to be sound. This information should come from the context.)

fun play_follows_defender_strategy :: <’g list = (°g = ’g) = bool>
where
<play_follows_defender_strategy (g0 # gl # pl) strat =
((if defender_position g0 then strat g0 = gl else True)
A play_follows_defender_strategy (gl # pl) strat)> |
<play_follows_defender_strategy _ _ = True>

lemma play_extension:
assumes
<last pl — g’>
<play pl>
shows
<play (pl @ [g’])>
using assms no_empty_play
by (induct pl, auto,
smt (verit, del_insts) append_Cons append_self_conv2
list.sel(3) play.simps)

lemma play_follows_defender_strategy_extension_atk:
assumes
<play_follows_defender_strategy pl strat>
<last pl — g’>
<attacker_position (last pl)>
shows
<play_follows_defender_strategy (pl @ [g’]) strat>
using assms
by (induct pl, auto, smt (z3) append_self_conv2 hd_append list.distinct(1)
list.sel(1,3) play_follows_defender_strategy.elims(1))
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lemma play_follows_defender_strategy_extension_dfn:

assumes
<play_follows_defender_strategy pl strat>
<defender_position (last pl)>

shows
<play_follows_defender_strategy (pl @ [strat (last pl)]) strat>

using assms

by (induct pl, force, smt (z3) append_Cons append_Nil
game.play_follows_defender_strategy.simps(3) last.simps
list.inject play_follows_defender_strategy.elims(1))

fun play_follows_attacker_strategy :: <’g list = (g = ’g) = bool>
where
<play_follows_attacker_strategy (g0 # gl # pl) strat =
((if attacker_position gO then strat g0 = gl else True)
A play_follows_attacker_strategy (gl # pl) strat)>
| <play_follows_attacker_strategy _ _ = True>

A defender strategy is winning from a position if all plays following the strategy from
there only lead to positions where the defender has moves and the strategy is sound.
(In particular, the defender also wins if the game goes on forever.)

definition defender_winning_strategy :: <’g strategy = ’g = bool>
where <defender_winning strategy def_strat g =
(Vpl. play pl A hd pl = g A play_follows_defender_strategy pl def_strat
— sound_defender_strategy def_strat (last pl) A —defender_loses (last pl))>

end

5 The Bisimulation Game

datatype (’a, ’s) bisim_game_pos =
Bisim_Attack ’s ’s
| Bisim_Defense ’a ’s ’s

fun (in 1ts) bisim_game_move ::
<(’a, ’s) bisim_game_pos = (’a, ’s) bisim_game_pos = bool> (infix <—B> 80)
where
<Bisim_Attack p q —B Bisim_Attack p’ q’ =
(P’ =qAq =p>
| <Bisim_Attack p q —B Bisim_Defense a p’ q’ =

(pr— ap’” Aq =q)>
| <Bisim_Defense a p q —B Bisim_Attack p’ q’ =
(g+— aq’ AN p’ =p)>

| <_ —B _ = False>
primrec bisim_defender_position where
<bisim_defender_position (Bisim_Defense ) = True> |

<bisim_defender_position (Bisim_Attack _ _) = False>

locale bisim_game =

1ts step +

game < (—B)> bisim_defender_position

for step :: <’s = ’a = ’s = bool>» (<_ +~——_ _> [70, 70, 70] 80)
begin
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fun strategy_from_bisim ::
<(’s = ’s = bool) = (’a, ’s) bisim_game_pos strategy> where
<strategy_from_bisim R (Bisim_Defense « p’ q) =
Bisim_Attack p’ (SOME q’. Rp’ @’ AN q+— «a q’)>
| <strategy_from_bisim _ _ = undefined>

lemma bisim_implies_defender_winning_strategy:
assumes <simulation R> <symp R> <R p q>
shows <defender_winning_strategy (strategy_from_bisim R) (Bisim_Attack p q)>
unfolding defender_winning_ strategy_def
proof (clarify)
fix pl
assume <play pl> <hd pl = Bisim_Attack p gq>
<play_follows_defender_strategy pl (strategy_from_bisim R)>
thus <sound_defender_strategy (strategy_from_bisim R) (last pl)
A — defender_loses (last pl)>
using <R p q>
proof (induct pl arbitrary: p q rule: induct_list012)
case (1 p q)
then show 7case using no_empty_play by fastforce
next
case (2 gp qQ
then show 7case
unfolding defender_loses_def sound_defender_strategy_def by simp
next
case 3 gg’ plpq
then have <g = Bisim_Attack p q> <g —B g’> using play.cases
by (auto, fastforce)
then obtain « p’ where
g’_spec: <g’ = Bisim_Defense o« p’ q A p — «a p’ V g’ = Bisim_Attack q p>
by (smt (verit, best) bisim_game_move.elims(1l) bisim_game_pos.distinct (1)
bisim_game_pos.inject (1))
then show 7case
proof (cases pl, safe)
assume g’_def: <g’ = Bisim_Defense o p’ q> <p =« p’>
then obtain q’ where q’_spec: <q —« q’> <R p’ q’>
using <simulation R> <R p g> unfolding simulation_def by blast
then show <sound_defender_strategy (strategy_from_bisim R)
(last [g, Bisim_Defense «a p’ q]l)>
unfolding sound_defender_strategy_def
by (auto, metis (mono_tags, lifting) someI2_ex)
show <defender_loses (last [g, Bisim_Defense « p’ q]) — False>
using q’_spec unfolding defender_loses_def
using bisim_game_move.simps(3) by (auto, blast)
have <play (g’ # pl)> using <play (g # g’ # pl)> using play.cases by blast
fix g’’ plrt
assume pl_def: <pl = g’’ # plrt>
hence <play pl> using <play (g’ # pl)> play.cases by auto

have <g’’ = (strategy_from_bisim R) g’> using g’_def(1) pl_def 3(5) by simp
then obtain q’’ where q’’_spec:
<g’’ = Bisim_Attack p’ q’’> <q —a q’’> <R p’ q’’>
using q’_spec g’_def by (auto, metis (mono_tags, lifting) somel_ex)
then show

<sound_defender_strategy (strategy_from_bisim R)
(last (g # Bisim_Defense « p’ q # g’’ # plrt))>
<defender_loses (last (g # Bisim_Defense o p’ q # g’’ # plrt)) — False>
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using 3 <play pl> unfolding defender_loses_def pl_def by auto
next
assume <g’ = Bisim_Attack q p>
then show
<sound_defender_strategy (strategy_from_bisim R)
(last [g, Bisim_Attack q pl)>
<defender_loses (last [g, Bisim_Attack q p]) = False>
unfolding sound_defender_strategy_def defender_loses_def by auto
fix g’’ plrt
assume pl_def: <pl = g’’ # plrt>
hence <play pl> using <play (g # g’ # pl)> play.cases by auto
have <R q p> using <R p q> <symp R> by (meson sympE)
thus <sound_defender_strategy (strategy_from_bisim R)
(last (g # Bisim_Attack q p # g’’ # plrt))>
<defender_loses (last (g # Bisim_Attack q p # g’’ # plrt)) —> False>
using 3 play.cases
unfolding sound_defender_strategy_def defender_loses_def pl_def
<g’ = Bisim_Attack q p>
by (auto) blast+
qed
ged
qed

lemma defender_winning_strategy_implies_bisim:
assumes
<defender_winning_strategy strat (Bisim_Attack pO qO0)>
defines
<R == Ap q. (Ipl.
hd pl = (Bisim_Attack pO q0)
A play pl
A play_follows_defender_strategy pl strat
A last pl = (Bisim_Attack p q))>
shows
<simulation R> <symp R> <R pO q0~>
proof -
show <symp R>
unfolding symp_def R_def
using no_empty_play
by (metis bisim_defender_position.simps(2) bisim_game_move.simps(1)
game.play_extension game.play_follows_defender_strategy_extension_atk
hd_append2 last_snoc)
show <R p0O q0>
using assms(1l) unfolding defender_winning_strategy_def R_def
using play.init by force
show <simulation R>
unfolding simulation_def
proof safe
fix p q a p’
assume <p ——a p’> <R p q>
then obtain pl where pl_spec:
<hd pl = Bisim_Attack pO q0>
<play_follows_defender_strategy pl strat>
<last pl = (Bisim_Attack p q)>
<play pl->
unfolding R_def by blast
from <p ——a p’> have <Bisim_Attack p q ~—B Bisim_Defense a p’ q> by simp
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hence defender_extension:

<play_follows_defender_strategy (pl @ [Bisim_Defense a p’ q]) strat>

<play (pl @ [Bisim_Defense a p’ ql)>
using play_follows_defender_strategy_extension_atk
pl_spec play_extension[of pl <Bisim_Defense a p’ g>] by auto
hence defender_extension_hd:
<hd (pl @ [Bisim_Defense a p’ q]) = Bisim_Attack pO q0>
by (metis hd_append no_empty_play pl_spec(1,4))
hence <options (Bisim_Defense a p’ q) # {}>
using assms(1) pl_spec defender_extension
unfolding defender_winning_strategy_def defender_loses_def
by force
then obtain q’ where q’_spec:
<strat (Bisim_Defense a p’ q) = Bisim_Attack p’ q’>
<Bisim_Attack p’ q’ € options (Bisim_Defense a p’ q)>
using defender_extension assms(1) defender_extension_hd
bisim_defender_position.simps(l) bisim_game_move.simps(3,5)
unfolding defender_winning_strategy_def sound_defender_strategy_def
by (metis last_snoc mem_Collect_eq bisim_game_pos.exhaust)
define long_play where
<long_play = pl @ [Bisim_Defense a p’ q, Bisim_Attack p’ q’]>
hence <hd long_play = Bisim_Attack p0 q0 A play long_play
A play_follows_defender_strategy long_play strat
A last long_play = Bisim_Attack p’ q’>
using play_extension play_follows_defender_strategy_extension_dfn
defender_extension q’_spec pl_spec no_empty_play last_snoc
by (auto simp add: hd_append) fastforce+
thus <3Jq’. q —a q’ AR p’ q’>
using q’_spec unfolding long_play_def R_def by force
qed
qed

theorem bisim_game_characterization:

shows

<(dstrat. defender_winning_strategy strat (Bisim_Attack p q)) =
bisimilar p g»

using defender_winning strategy_implies_bisim
bisim_implies_defender_winning_strategy

unfolding bisimilar_def

by blast

end

end

theory Priced_HML

imports
Hennessy_Milner_Logic
"HOL-Library.Extended_Nat"

begin

datatype distinction_price =
Price
(obs_depth: <enat>)
(conj_depth: <enat>)
(pos_cl_height: <enat>)
(pos_cl_height_2: <enat>)
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(neg_cl_height: <enat>)
(neg_depth: <enat>)

lemma unfold_distinction_price:

<dp = Price (obs_depth dp) (conj_depth dp) (pos_cl_height dp) (pos_cl_height_2
dp) (neg_cl_height dp) (neg_depth dp)>

using distinction_price.collapse ..

instantiation distinction_price :: order
begin
fun less_eq_distinction_price :: <distinction_price = distinction_price = bool>

where <less_eq_distinction_price (Price obs conjs posh posh2 negh negs) (Price
obs’ conjs’ posh’ posh2’ negh’ negs’) =
(obs < obs’ A conjs < conjs’ A posh < posh’ A posh2 < posh2’ A negh < negh’
A negs < negs’)>

definition less_distinction_price :: <distinction_price = distinction_price =
bool> where
<less_distinction_price pr pr’ =
(pr < pr’ A —=(pr’ < pr))>

instance
proof
fix pr pr’:: distinction_price
show <(pr < pr’) = (pr < pr’ A - pr’ < pr)>
unfolding less_distinction_price_def by blast
next
fix pr:: distinction_price
show <pr < pr»>
by (induct pr, auto)
next
fix prl pr2 pr3:: distinction_price
assume <prl < pr2> <pr2 < pr3>
thus <pr1l < pr3>
using unfold_distinction_price
by (smt (verit, best) dual_order.trans less_eq_distinction_price.simps)
next
fix prl pr2:: distinction_price
assume <prl < pr2> <pr2 < pril>
thus <prl = pr2>
using less_eq_distinction_price.elims(2) by fastforce
qed
end

lemma less_eq_distinction_price_def:

<(pl < p2) = (obs_depth pl < obs_depth p2 A conj_depth pl < conj_depth p2 A
pos_cl_height pl < pos_cl_height p2 A pos_cl_height_2 pl < pos_cl_height_2 p2 A
neg_cl_height pl < neg_cl_height p2 A neg_depth pl < neg_depth p2)>

by (induct pl, induct p2, auto)

primrec price_dec_obs where

<price_dec_obs (Price obs conjs posh posh2 negh negs) = (Price (obs-1) conjs posh
posh2 negh negs) >
primrec price_cap_obs where

<price_cap_obs cap (Price obs conjs posh posh2 negh negs) = (Price (min obs cap)
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conjs posh posh2 negh negs) >
primrec price_cap_posh where

<price_cap_posh cap (Price obs conjs posh posh2 negh negs) = (Price obs conjs
(min posh cap) posh2 negh negs) >
primrec price_dec_conjs where

<price_dec_conjs (Price obs conjs posh posh2 negh negs) = (Price obs (conjs-1)
posh posh2 negh negs) >
primrec price_dec_negs where

<price_dec_negs (Price obs conjs posh posh2 negh negs) = (Price obs conjs posh
posh2 negh (negs - 1))>

primrec formula_of_price :: <distinction_price = (’a,’i) hml_formula = bool>
and conjunct_of_price :: <distinction_price = (’a,’i) hml_conjunct = bool>
where

<formula_of_price pr HML_true = True>
| <formula_of_price pr ({a)¢) =
(if obs_depth pr > O then formula_of_price (price_dec_obs pr) ¢ else False)>
| <formula_of_price pr (HML_conj I F) =
(if conj_depth pr > O then
(Fier.
conjunct_of_price (price_dec_conjs pr) (F i)
A (Vje(I-{i}). conjunct_of_price (price_cap_posh (pos_cl_height_2 pr) (price_dec_conjs
pr)) (F j)))
else False)>
| <conjunct_of_price pr (HML_pos ¢) =
(case ¢ of ({a)¢’) = formula_of_price (price_cap_obs (pos_cl_height pr) pr) ¢
| _ = False)>»
| <conjunct_of_price pr (HML_neg ¢) =
(case ¢ of ({(a)p’) =
if neg_depth pr > O then
formula_of_price (price_dec_negs (price_cap_obs (neg_cl_height pr) pr)) ¢
else False
| _ = False)>

thm hml_formula_hml_conjunct.induct

lemma ediffl_le_mono:
assumes <n < (m::enat)>
shows <n -1 <m- 1>
using assms
by (induct n, induct m, auto simp add: one_enat_def)

lemma emin_le_mono:
assumes <n < (m::enat)>
shows <min a n < min a m>
using assms
by (induct n, induct m, auto simp add: min.coboundedI2)

lemma conjuncts_require_observations:
assumes <conjunct_of_price pr ¢> <obs_depth pr = 0>
shows <False>
proof (cases )
case (HML_pos )
then obtain « ¢’ where <@ = {(a)¢’> using assms(1)
by (metis conjunct_of_price.simps(1l) hml_formula.exhaust hml_formula.simps(10)
hml_formula.simps(9))

18



then show 7thesis using assms HML_pos
by (metis conjunct_of_price.simps(1l) distinction_price.collapse formula_of_price.simps(2)
hml_formula.simps(11) less_numeral_extra(3) min_enat_simps(3) price_cap_obs.simps)
next
case (HML_neg ¢)
then obtain « ¢’ where < = {(a)¢’> using assms(1)
by (metis conjunct_of_price.simps(2) hml_formula.exhaust hml_formula.simps(10)
hml_formula.simps(9))
then show 7thesis using assms HML_neg
by (metis conjunct_of_price.simps(2) distinction_price.collapse distinction_price.sel(1)
formula_of_price.simps(2) hml_formula.simps(11) le_zero_eq linorder_neq_iff
min.coboundedl
price_cap_obs.simps price_dec_negs.simps)
qed

lemma only_true_for_free:
assumes <formula_of_price pr ¢> <obs_depth pr = 0>
shows <@ = HML_true>
using assms
by (induct pr; induct ¢; auto;
metis conjuncts_require_observations distinction_price.sel(1l) price_dec_conjs.simps)

lemma deeper_conjuncts_require_observations:
assumes <conjunct_of_price pr ¢> <obs_depth pr = 1>
shows <Ja. ¥ = (+{a) HML_true) V ¢ = (-(a) HML_true)>
proof (cases )
case (HML_pos )
then obtain « ¢’ where
<@ = (a)p’> <formula_of_price (price_dec_obs (price_cap_obs (pos_cl_height
pr) pr)) ¢’>
using assms(1)
by (metis conjunct_of_price.simps(1) formula_of_price.simps(2) hml_formula.exhaust
hml_formula.simps(10) hml_formula.simps(11l) hml_formula.simps(9))
hence <¢’ = HML_true>
using only_true_for_free <obs_depth pr = 1>
by (metis add_diff_cancel_enat distinction_price.exhaust_sel distinction_price.sel(1)
ediffl_le_mono il_ne_infinity le_zero_eq min.coboundedl one_eSuc plus_1_eSuc(1)
price_cap_obs.simps price_dec_obs.simps)
then show ?7thesis using <p = (a)p’> HML_pos by blast
next
case (HML_neg ¢)
then obtain a ¢’ where
<p = <a>¢’> <formula_of_price (price_dec_obs (price_dec_negs (price_cap_obs
(neg_cl_height pr) pr))) ¢’>
using assms(1)
by (metis conjunct_of_price.simps(2) formula_of_price.simps(2) hml_formula.exhaust
hml_formula.simps(10) hml_formula.simps(11) hml_formula.simps(9))
hence <¢’ = HML_true>
using only_true_for_free <obs_depth pr = 1>
by (metis (no_types, lifting) HML_neg assms(1l) conjunct_of_price.simps(2)
distinction_price.exhaust_sel distinction_price.sel(l) eSuc_minus_1 hml_formula.distinc
hml_formula.simps(11) iless_eSucO min.coboundedl one_eSuc order_le_less
price_cap_obs.simps
price_dec_negs.simps price_dec_obs.simps)
then show ?7thesis using <p = (a)p’> HML_neg by blast
qed
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lemma neg_conjuncts_require_negations:

assumes <conjunct_of_price pr (HML_neg ¢)> <neg_depth pr = 0>

shows <False>

using assms

by (auto, metis hml_formula.exhaust hml_formula.simps(10) hml_formula.simps(11)
hml_formula.simps(9) less_numeral_extra(3))

lemma price_closure:

assumes
<p01 < p02>
<formula_of_price p01l ¢0~>

shows
<formula_of_price p02 ¢0~>

proof -

{
fix ¢ :: <(’a, ’i) hml_formula> and @ :: <(’a, ’i) hml_conjunct>
have

<Apl p2. pl < p2 = formula_of_price pl ¢ —> formula_of_price p2 p>
<Apl p2. pl < p2 = conjunct_of_price pl ¢y — conjunct_of_price p2 >
proof (induct ¢ and )
case HML_true
then show 7case by simp
next
case (HML_conj I ¥)
from this(3) have <Vie€I. dp0 < pl. conjunct_of_price pO (¥ i)> apply (cases
pl) apply auto sorry
hence <Vi€I. conjunct_of_price p2 (¥ i)> using HML_conj by auto
then show 7case
using HML_conj.prems less_eq_distinction_price.elims(2) apply (induct p2)
apply auto defer
apply fastforce
sorry
next
case (HML_obs a ¢)
hence <formula_of_price (price_dec_obs pl) ¢> by (simp, argo)
moreover have <price_dec_obs pl < price_dec_obs p2>
using HML_obs(2) ediffl_le_mono by (cases pl, cases p2, auto)
ultimately have <formula_of_price (price_dec_obs p2) ¢> using HML_obs by
blast
then show 7case
using HML_obs.prems less_eq_distinction_price_def by force
next
case (HML_pos ¢)
then show 7case sorry
next
case (HML_neg )
then show 7case sorry
qed
}
thus 7thesis using assms by auto
qed

end
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6 Priced Spectrum

theory Priced_Spectrum
imports
Priced_HML
HML_Spectrum

begin

context 1lts
begin

interpretation hml: 1lts_semantics where satisfies = satisfies
by unfold_locales

interpretation hml_conj: lts_semantics where satisfies = satisfies_conj
by unfold_locales

abbreviation <price_preordered pr = hml.preordered (Collect (formula_of_price pr))>

6.1 Enabledness

A minimal and a way bigger coordinate to characterize enabledness preorder. (One
could still increase either one of the last two dimensions, but would arrive at the same
language.)

lemma enabledness_conjunctions_are_neutral:
<hml.eq_distinctive
(Collect (formula_of_price (Price 1 0 0 0 0 0)))
(Collect (formula_of_price (Price 1 oo oo oo 0 0)))>
unfolding hml.leq_distinctive_def
proof safe
fixpqy
assume case_assms:
<formula_of_price (Price 1 0 0 0 0 0) ¢>
‘PE @ <mqfFE ¢
hence <p € Collect (formula_of_price (Price 1 co oo co 0 0))>
using price_closure
by (metis (no_types, opaque_lifting) enat_ord_simps(3) less_eq_distinction_price.simps
mem_Collect_eq order_refl)
thus <d¢p’ €Collect (formula_of_price (Price 1 co oo oo 0 0)). hml.distinguishes
¥’ P a’
using case_assms by blast
next
fixpqy
assume case_assms:
<formula_of_price (Price 1 co oo co 0 0) ¢>
P @ <maqf @
show <3J¢’€Collect (formula_of_price (Price 1 0 0 0 0 0)). hml.distinguishes ¢’
pq’
proof (cases )
case HML_true
then show 7thesis using case_assms by auto
next
case (HML_conj I ¥)
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hence <Vi € I. 3 o. ¥ i = +(o)HML_true>
using case_assms(1)
by (simp, metis deeper_conjuncts_require_observations neg_conjuncts_require_negations
distinction_price.sel(1) distinction_price.sel(6) member_remove remove_def)
hence <Vi € I. 3 «a. (¥ i) = (+(a)HML_true) A
formula_of_price (Price 1 0 0 0 0 0) ({a)HML_true)>
by auto
then show 7thesis using case_assms HML_conj
by (metis mem_Collect_eq satisfies.simps(2) satisfies_conj.simps(1))
next
case (HML_obs «a ¢’)
hence <formula_of_price (Price 0 co oo oo 0 0) ¢’> using case_assms(1l) by simp
hence <@’ = HML_true> using only_true_for_free
using distinction_price.sel(1) by blast
hence <formula_of_price (Price 0 0 0 0 0 0) ¢’> by simp
hence <formula_of_price (Price 1 0 0 0 0 0) ({a)¢’)> by simp
then show 7thesis using case_assms(2,3) HML_obs by blast
qed
qed

6.2 Traces

lemma trace_observations_respect_prices:
assumes
<observations_traces >
shows
<formula_of_price (Price co 0 0 0 0 0) ¢>
using assms by (induct, auto)

lemma trace_prices_imply_observations:
assumes
<formula_of_price (Price co 0 0 0 0 0) ¢>
shows
<observations_traces >
using assms by (induct ¢, auto simp add: observations_traces.intros)

theorem traces_priced_characterization:
<(<T) = price_preordered (Price co 0 0 0 0 0)>
using trace_observations_respect_prices trace_prices_imply_observations
unfolding observations_traces_characterizes_trace_preorder by blast

6.3 Simulation

lemma simulation_prices_imply_observations:
fixes
@ :: <(a, ’s) hml_formula> and
¥ :: <(’a, ’s) hml_conjunct>
shows
<formula_of_price (Price oo oo oo oo 0 0) ¢ = observations_simulation ¢>
<conjunct_of_price (Price oo co oo co 0 0) ¥ — observations_simulation_conj
P>
proof (induct ¢ and )
case HML_true
then show 7case using observations_simulation_observations_simulation_conj.intros
by simp
next
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case (HML_conj I U)
hence <I # {}>
using observations_simulation.cases by auto
then show 7case using HML_conj
apply (auto)
by (metis Diff_iff <I # {}> observations_simulation.simps range_eql singletonD)
next
case (HML_obs a ¢)
then show 7case
using observations_simulation_observations_simulation_conj.intros by auto
next
case (HML_pos )
show 7case
proof (cases ¢)
case HML_true
then show 7thesis using HML_pos
by simp
next
case (HML_conj I’ ¥’)
then show 7thesis using HML_pos
by simp
next
case (HML_obs «a ¢’)
then show 7thesis using HML_pos observations_simulation_conj.simps
by (metis conjunct_of_price.simps(1) distinction_price.sel(3) hml_formula.distinct(3,5)
hml_formula.simps(11) observations_simulation.simps min_enat_simps(5)
price_cap_obs.simps)
qed
next
case (HML_neg )
from this(2) have False by (cases ¢, auto)
thus ?case
qed

lemma simulation_observations_respect_prices:

fixes
@ :: <(Ca, ’s) hml_formula> and
¥ :: <(’a, ’s) hml_conjunct>
shows

<observations_simulation ¢ = formula_of_price (Price co oo oo oo 0 0) ¢>
<observations_simulation_conj ¥ = conjunct_of_price (Price oo co oo co 0 0)
P>
proof (induct ¢ and )
case HML_true
then show 7case by simp
next
case (HML_conj I V)
hence <I # {}>»
using observations_simulation.cases by auto
then show 7case using HML_conj
apply (auto)
by (metis DiffD1 hml_formula.distinct(1,5) hml_formula.inject(l) observations_simulation.si
range_eql)
next
case (HML_obs «a ¢)
then show 7case
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using lts.observations_simulation.cases by auto
next
case (HML_pos ¢)
then obtain a ¢’ where a_g¢’: <p = ({a)p’) A observations_simulation ¢’>
using lts.observations_simulation_conj.simps
by (metis hml_conjunct.inject (1))
hence <conjunct_of_price (Price oo 0o oo 0o 0 0) (+({a)p’))>
using HML_pos.hyps lts.observations_simulation.simps by auto
thus 7case using a_p’ by blast
next
case (HML_neg ¢)
from this(2) have False
using observations_simulation_conj.simps by blast
thus 7case
qed

theorem simulation_priced_characterization:
<(<8) = price_preordered (Price 0o 0o oo oo 0 0)>
using simulation_observations_respect_prices simulation_prices_imply_observations
unfolding observations_simulation_characterize_simulation_preorder by blast

end

end
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